Lead Hexaferrite – A Brief Review


Lead Hexaferrite – A Brief Review

S.A. Palomares-Sánchez, M.I. González Castro, S. Ponce Castañeda

Lead hexaferrite belongs to the family of compounds with the chemical formula MFe12O19 (M = Ca, Ba, Sr, Pb, La). One of the main reasons the lead hexaferrite has not been exhaustively studied is because its magnetic properties are inferior to barium and strontium hexaferrites. Few studies have been carried out after the description of its structure, in 1938; nevertheless, one of its advantages is that it can be prepared at lower temperatures than conventional reported ferrites and it is worth studying its properties when compared with other members of the family. Therefore, this work deals with a brief review of preparation methods, properties and applications of this compound.

Lead Ferrites, Crystal Structure, Preparation Methods, Magnetic Properties

Published online 9/20/2019, 34 pages

Citation: S.A. Palomares-Sánchez, M.I. González Castro, S. Ponce Castañeda, Lead Hexaferrite – A Brief Review, Materials Research Foundations, Vol. 57, pp 23-56, 2019

DOI: https://doi.org/10.21741/9781644900390-2

Part of the book on Engineering Magnetic, Dielectric and Microwave Properties of Ceramics and Alloys

[1] Valenzuela, R. Magnetic Ceramics, Cambridge University Press. New York. 1994. https://doi.org/10.1017/CBO9780511600296
[2] Özgür, Ü.,Alivov, Y., Morkoç, H. Microwave ferrites, part 1: fundamental properties. Journal of Materials Science: Materials in Electronics 20 (2009) 789-834. https://doi.org/10.1007/s10854-009-9923-2
[3] Kirchmayr, H. J. Permanent magnets and hard magnetic materials. Journal of Physics D: Applied Physics 29 (1996) 2763–2778. https://doi.org/10.1088/0022-3727/29/11/007
[4] Tan, G., Li, W. Ferroelectricity and ferromagnetism of M-type lead hexaferrite. Journal of the American Ceramic Society 98 (2015) 1812–1817. https://doi.org/10.1111/jace.13530
[5] Kostishin, V. G., Panina, L. V., Kozhitov, L. V., Timofeev, A. V., Zyuzin, A. K., Kovalev, A. N. On synthesis of BaFe12O19, SrFe12O19, and PbFe12O19 hexagonal ferrite ceramics with multiferroid properties. Technical Physics 60 (2015) 1189–1193. https://doi.org/10.1134/S1063784215080150
[6] Toxicological Profile for Lead, US Department of Health and Human Services, Public Health Service, Agency for Toxic Substances and Disease Registry, Atlanta, GA, 1999.
[7] Pullar, R. Hexagonal ferrites: A review of the synthesis, properties and applications of hexaferrite ceramics. Progress in Materials Science 57 (2012) 1191-1334. https://doi.org/10.1016/j.pmatsci.2012.04.001
[8] Mahmood, S. H., Abu-Aljarayesh A. Hexaferrite permanent magnetic materials. Materials Research Foundations, 2016. https://doi.org/10.21741/9781945291074
[9] Adelsköld, V. X-ray studies on magneto-plumbitePbO(Fe2O3)6 and other substances resembling beta-alumina Na2O(Al12O3)11. ArkivförKemi, MineralogiochGeologi, A12 (1938) 1-9.
[10] Kojima, H. Fundamental properties of hexagonal ferrites with magnetoplumbite structure. In: Wohlfarth E. P., Ed. Ferromagnetic Materials, Vol. 3. Amsterdam: North-Holland Physics Publishing; 1982. https://doi.org/10.1016/S1574-9304(05)80091-4
[11] Moore, P. B., Sen Gupta, P. K., Le Page, Y. Magnetoplumbite, Pb2+Fe123+O19: Refinement and lone-pair splitting. American Mineralogist 74 (1989) 1186-1194.
[12] Parida, S. C. Order-disorder transitions and thermodynamic properties of M-type hexaferrites. Solid State Phenomena 150 (2009) 101-121. https://doi.org/10.4028/www.scientific.net/SSP.150.101
[13] Palomares-Sánchez S. A., Díaz-Castañón, S., Ponce-Castañeda S., Mirabal-García, M., Leccabue, F., Watts, B. E. Use of the Rietveld refinement method for the preparation of pure lead hexaferrite. Material Letters 59 (2005) 591-594. https://doi.org/10.1016/j.matlet.2004.11.002
[14] Panda, A., Govindaraj, R., Vinod, K., Kalavathi, S., Amarendra, G. Nanoparticles of lead hexaferrite as studied using Mössbauer spectroscopy. AIP Conference Proceedings 1832 (2017) 050153-1-3. https://doi.org/10.1063/1.4980386
[15] Watts, B. E., Regonini, D., Leccabue, F., Casoli, F., Albertini, F., Bocelli, G., Schmool, D. Structural and magnetic properties of chemically deposited hexaferrites. Materials Science Forum 514-516 (2006) 304-308. https://doi.org/10.4028/www.scientific.net/MSF.514-516.304
[16] Ikeda, Y., Hara, C., Fujii, T., Sato, M., Inoue, M. Direct synthesis of lead-hexaferrite particles by mist pyrolysis. Journal of the Magnetics Society of Japan 22 (1998) 249–251. https://doi.org/10.3379/jmsjmag.22.S1_249
[17] Xu, P., Han, X., Wang, M. Synthesis and magnetic properties of BaFe12O19 hexaferrite nanoparticles by a reverse microemulsion technique. Journal of Physical Chemistry C 111 (2007) 5866–5870. https://doi.org/10.1021/jp068955c
[18] Cabañas, M. V., González-Calbet, J. M., Labeau, M., Mollard, P., Pernet, M., Vallet-Regi, M. Evolution of the microstructure and its influence on the magnetic properties of aerosol synthesized BaFe12O19 particles. Journal of Solid State Chemistry 101 (1992) 265-274. https://doi.org/10.1016/0022-4596(92)90183-V
[19] Ramírez, A. E., Solarte, N. J., Singh, L. H., Coaquirac, J. A. H., Gaona J., S. Investigation of the magnetic properties of SrFe12O19 synthesized by the Pechini and combustion methods. Journal of Magnetism and Magnetic Materials 438 (2017) 100-106. https://doi.org/10.1016/j.jmmm.2017.04.042
[20] Schumacher, F., Hempel, K., Von Staa, F. The magnetic behavior of barium ferrite prepared by glass crystallization method. Journal de Physique Colloques 49 (1988) C8-949-C8-950. https://doi.org/10.1051/jphyscol:19888433
[21] Matirosyan, K. S., Matirosyan, N., Chalykh, A. Structure and properties of hard–magnetic barium, strontium, and lead ferrites. Inorganic Materials 39 (2003) 886-870.
[22] Gajbhiye, N. S., Vijayalakshmi, Weissmüller, A. Magnetic properties of nanosize lead hexaferrite particles. physica status solidi 189 (2002) 685-689. https://doi.org/10.1002/1521-396X(200202)189:3<685::AID-PSSA685>3.0.CO;2-S
[23] Korniyenko K. Iron – Oxygen – Lead. In: Effenberg G., Ilyenko S. (eds) Ternary Alloy Systems. Landolt-Börnstein – Group IV Physical Chemistry. Vol 11D5 (2009) Springer, Berlin. https://doi.org/10.1007/978-3-540-70890-2_19
[24] Berger, W., Pawlek, F. Kristallographische und magnetische Untersuchungen im System Bleioxyd (PbO)-Eisenoxyd (Fe2O3). Archivfür das Eisenhüttenwesen 28 (1957)101-108. https://doi.org/10.1002/srin.195702122
[25] Mountvala, A. J., Ravitz, S. F. Phase relations and structures in the system PbO-Fe2O3. Journal of the American Ceramic Society. 45 (1962) 285-288. https://doi.org/10.1111/j.1151-2916.1962.tb11146.x
[26] Nevřiva, M., Fischer, K. Contribution to the binary phase diagram of the system PbO-Fe2O3. Materials Research Bulletin 21 (1986) 1285-1290. https://doi.org/10.1016/0025-5408(86)90061-9
[27] Cocco, A. Richerche sul sistema binario PbO- Fe2O3.Annali di Chimica (Roma) 45 (1955) 737-53.
[28] Tokar, M. Microstructure and magnetic properties of lead ferrite. Journal of the American Ceramic Society 52 (1968) 302-306. https://doi.org/10.1111/j.1151-2916.1969.tb11930.x
[29] Shono, K., Gomi, M., Abe, M. Magneto-optical properties of magnetoplumbites BaFe12O19, SrFe12-xAlxO19 and PbFe12O19. Japanese Journal of Applied Physics 21 (1982) 1451-1454. https://doi.org/10.1143/JJAP.21.1451
[30] Ram, S., Bahadur, D., Chakravorty, D. Magnetic glass-ceramics with hexagonal lead ferrites. Journal of Non-Crystalline Solids 88 (1986) 311-322. https://doi.org/10.1016/S0022-3093(86)80033-3
[31] Višňovský, Š.,Široký, P. Krishnan, R. Complex polar Kerr effect spectra of magnetoplumbite. Czechoslovak Journal of Physics B 36 (1986) 1434–1442. https://doi.org/10.1007/BF01959568
[32] Štĕpánková, H., Englich, J., Lütgemeier H. NMR study of Ga and Al substituted hexagonal ferrites with magnetoplumbite structure. IEEE Transactions on Magnetics 30 (1994) 988-990. https://doi.org/10.1109/20.312467
[33] Carp, O., Segal, E., Brezeanu, M., Barjega, Stanica, N. Nonconventional methods for obtaining hexaferrites. I. Lead hexaferrite. Journal of Thermal Analysis 50 (1997) 125–135. https://doi.org/10.1007/BF01979555
[34] Bezlepkin, A. A., Kuntsevich, S. P., Kostyukov, V. I. Magnetic relaxation of oscillating domain walls in PbFe12O19. Physics of the Solid State 39 (1997) 99-100. https://doi.org/10.1134/1.1129840
[35] Ikeda, Y., Hara, C., Fujii, T., Sato, M., Inoue, M. Direct synthesis of lead-hexaferrite particles by mist pyrolysis. Journal of the Magnetics Society of Japan 22 (1998) 249–251. https://doi.org/10.3379/jmsjmag.22.S1_249
[36] Díaz-Castañón S., Sánchez Ll, J. L., Estevez-Rams, E., Leccabue, F., Watts, B. Magneto-structural properties of PbFe12O19 hexaferrite powders prepared by decomposition of hydroxide–carbonate and metal–organic precipitates. Journal of Magnetism and Magnetic Materials 185 (1998) 194-198. https://doi.org/10.1016/S0304-8853(98)00013-4
[37] Zhukovsky, V. M., Bushkova, O. V., Zainullina, V. M., Dontsov, G. I., Volosentseva, L. I., Zhukovskaya A. S. Diffusion transport in hexagonal ferrites with magnetoplumbite structure. Solid State Ionics 119 (1999) 15-17. https://doi.org/10.1016/S0167-2738(98)00476-7
[38] Gajbhiye, N. S., Vijayalakshmi, Weissmüller, A. Magnetic properties of nanosize lead hexaferrite particles. physica status solidi 189 (2002) 685-689. https://doi.org/10.1002/1521-396X(200202)189:3<685::AID-PSSA685>3.0.CO;2-S
[39] Matirosyan, K. S., Matirosyan, N., Chalykh, A. Structure and properties of hard–magnetic barium, strontium, and lead ferrits. Inorganic Materials 39 (2003) 886-870. https://doi.org/10.1023/A:1025037716108
[40] Díaz-Castañón, S., Faloh-Gandarilla, J., Leccabue F., Albanese G. The optimum synthesis of high coercivity Pb-M hexaferrite powders using modifications to the traditional ceramic route. Journal of Magnetism and Magnetic Materials, 272-276 (2004) 2221-2223. https://doi.org/10.1016/j.jmmm.2003.12.923
[41] Yang, N., Yang, H., Jia, J., Pang, X. Formation and magnetic properties of nanosized PbFe12O19 particles synthesized by citrate precursor technique. Journal of Alloys and Compounds 438 (2007) 263-267. https://doi.org/10.1016/j.jallcom.2006.08.037
[42] Chaudhury, S., Rakshit, S. K., Parida, S. C., Singh, Z., Singh Mudher, K. D., Venugopal, V. Studies on structural and thermo-chemical behavior of MFe12O19(s) (M = Sr, Ba and Pb) prepared by citrate-nitrate gel combustion method. Journal of Alloys and Compounds 455 (2008) 25-30. https://doi.org/10.1016/j.jallcom.2007.01.075
[43] Singhal, S., Namgyal, T., Singh, J., Chandra, K., Bansal, S. A comparative study on the magnetic properties of MFe12O19 and MAlFe11O19 (M = Sr, Ba and Pb) hexaferrites with different morphologies. Ceramics International 37 (2011) 1833-1837. https://doi.org/10.1016/j.ceramint.2011.02.001
[44] Tan, G., Wang, M. Multiferroic PbFe12O19ceramics. Journal of Electroceramics 26 (2011) 170-174. https://doi.org/10.1007/s10832-011-9641-z
[45] Mao, L., Cui, H., An, H,, Wang, B., Zhai, J., Zhao, Y., Li, Q. Stabilization of simulated lead sludge with iron sludge via formation of PbFe12O19 by thermal treatment. Chemosphere 117 (2014) 745-752. https://doi.org/10.1016/j.chemosphere.2014.08.027
[46] Ansari, F., Sobhani, B., Salavati-Niasari, M. Sol–gel auto-combustion synthesis of PbFe12O19 using maltose as a novel reductant. RSC Advances 4 (2014) 63946-63950. https://doi.org/10.1039/C4RA11688G
[47] Guerrero-Serrano, A. L.; Mirabal-García, M.; Palomares-Sánchez, S. A.; Martínez-Mendoza, J. R. Study of the magnetic properties of the Pb-hexaferrite obtained as a single phase by two methods. RevistaLatinoamericana de Metalurgia y Materiales 34 (2014) 136-141.
[48] Ansari, F., Soofivand, F., Salavati-Niasari, M. Utilizing maleic acid as a novel fuel for synthesis of PbFe12O19nanoceramics via sol-gel auto-combustion route. Materials Characterization 103 (2015) 11-17. https://doi.org/10.1016/j.matchar.2015.03.010
[49] Ansari, F., Salavati-Niasari, M. Simple sol-gel auto-combustion synthesis and characterization of lead hexaferrite by utilizing cherry juice as a novel fuel and green capping agent. Advanced Powder Technology 27 (2016) 2025-2031. https://doi.org/10.1016/j.apt.2016.07.011
[50] Halakouie, H., Nabiyouni, G., Saffari, J., Ahmadi, A., Ghanbari, D. Lead hexa-ferrites and magnetic cellulose acetate nanocomposites: study of magnetization, coercivity and remanence. Journal of Materials Science: Materials in Electronics 27 (2016) 7738-7749. https://doi.org/10.1007/s10854-016-4761-5
[51] MousaviGhahfarokhi, S. E., Rostami, Z., Kazeminezhad, I. Fabrication of PbFe12O19 nanoparticles and study of their structural, magnetic and dielectric properties. Journal of Magnetism and Magnetic Materials 399 (2016) 130-142. https://doi.org/10.1016/j.jmmm.2015.09.063
[52] Ansari, F., Sobhani, A., Salavati-Niasari, M. PbTiO3/PbFe12O19 nanocomposites: Green synthesis through an eco-friendly approach. Composites Part B 85 (2016) 170-175. https://doi.org/10.1016/j.compositesb.2015.09.027
[53] Asiabani, N., Nabiyouni, G., Khaghani, S., Ghanbari, D. Green synthesis of magnetic and photo-catalyst PbFe12O19-PbS nanocomposites by lemon extract: nano-sphere PbFe12O19 and star-like PbS. Journal of Materials Science: Materials in Electronics 28 (2017) 1101-1114. https://doi.org/10.1007/s10854-016-5635-6
[54] Mahdiani, M., Sobhani, A., Salavati-Niasari, M. Enhancement of magnetic, electrochemical and photocatalytic properties of lead hexaferrites with coating graphene and CNT: Sol-gel auto-combustion synthesis by valine. Separation and Purification Technology 185 (2017) 140-148. https://doi.org/10.1016/j.seppur.2017.05.029
[55] Prathap, S., Madhuri, W. Multiferroic properties of microwave sintered PbFe12−xO19−δ. Journal of Magnetism and Magnetic Materials 430 (2017) 114–122. https://doi.org/10.1016/j.jmmm.2016.12.116
[56] Lu, X., Ning, X., Lee, P.-.H, Shih, K., Wang, F., Zeng, E. Y. Transformation of hazardous lead into lead ferrite ceramics: Crystal structures and their role in lead leaching. Journal of Hazardous Materials 336 (2017) 139–145. https://doi.org/10.1016/j.jhazmat.2017.04.061
[57] Mahdiani, M., Soofivand, F., Salavati-Niasari, M. Investigation of experimental and instrumental parameters on properties of PbFe12O19 nanostructures prepared by sonochemical method. UltrasonicsSonochemistry 40 (2017) 271-281. https://doi.org/10.1016/j.ultsonch.2017.06.023
[58] Morisako, A., Nakanishi, H., Matsumoto, M., Naoe, M. Low‐temperature deposition of hexagonal ferrite films by sputtering. Journal of Applied Physics 75 (1994) 5969-5971. https://doi.org/10.1063/1.355528
[59] Dorsey P. C., Qadri S. B., Grabowski, K. S., Knies, D. L., Lubitz, P., Chrisey, D. B., Horwitz, J. S. Epitaxial Pb–Fe–O film with large planar magnetic anisotropy on (0001) sapphire. Physical Review Letters 70 (1997) 1173-1175. https://doi.org/10.1063/1.118483
[60] Díaz-Castañón, S., Leccabue, F., Watts, B. E., Yapp, R., Asenjo, A., Vázquez, M. Oriented PbFe12O19 thin films prepared by pulsed laser deposition on sapphire substrate. Materials Letters 47 (2001) 356-361. https://doi.org/10.1016/S0167-577X(00)00266-4
[61] Díaz-Castañón, S., Leccabue, F., Watts, B. E., Yapp, R. PbFe12O19 thin films prepared by pulsed laser deposition on Si/SiO2 substrates. Journal of Magnetism and Magnetic Materials 220 (2000) 79-84. https://doi.org/10.1016/S0304-8853(00)00473-X
[62] Faloh-Gandarilla, J. C., Díaz-Castañón S., Leccabue, F., Watts, B. E. Magnetic properties of polycrystalline Sr-M and Pb-M hexaferrites thin films grown by pulsed laser deposition on Si/SiO2 substrates. Journal of Alloys and Compounds 369 (2004) 195-197. https://doi.org/10.1016/j.jallcom.2003.09.102
[63] Castro-Rodríguez, R., Palomares-Sánchez, S., Leccabue, F., Arisi, E., Watts, B. E. Optimal target-substrate distance in the growth of oxides thin films by pulsed laser deposition. Materials Letters 57 (2003) 3320-3324. https://doi.org/10.1016/S0167-577X(03)00066-1
[64] Doh, S. J., Je, J. H., Cho, T. S. Pb cation induced low-temperature crystallization of (BaPb) hexa-ferrite thin films. Journal of Electroceramics 17 (2006) 365-368. https://doi.org/10.1007/s10832-006-7239-7
[65] Geiler, A. L., He, Y., Yoon, S. D., Yang, A., Chen, Y., Harris, V. G., Vittoria, C. Epitaxial growth of PbFe12O19 thin films by alternating target laser ablation deposition of Fe2O3 and PbO. Journal of Applied Physics 101 (2007) 09M510-1-3. https://doi.org/10.1063/1.2710222
[66] Croft, W. J., Kestigian, M., Borovicka, R., Garabedian, F. Unit cell dimensions in the system PbAl12-xFexO19. Materials Research Bulletin 2 (1967) 849-852. https://doi.org/10.1016/0025-5408(67)90093-1
[67] Pollert, E., Nevřiva, M., Matějková, L., Novák, J. Preparation and characterization of PbFe12−xGaxO19 single crystals. Materials Research Bulletin 16 (1981) 1499-1504. https://doi.org/10.1016/0025-5408(81)90020-9
[68] Pollert, E., Matĕjková, L. Single crystals of lead hexaferrite substituted by samarium ions. Crystal Research and Technology 16 (1981) K53-K54. https://doi.org/10.1002/crat.19810160327
[69] Zhai, H. R., Liu, J. Z., Lu, M. Influence of Ru3+ ions on anisotropy of PbFe12O19 single crystals. Journal of Applied Physics 52 (1981) 2323-2325. https://doi.org/10.1063/1.328919
[70] Široký, P., Schmidt, E., Lukeš, F., Humlíček, J. Optical properties of Ga-substituted magnetoplumbites.physical status solidi 83 (1984) 581-588. https://doi.org/10.1002/pssa.2210830220
[71] Pollert, E., Hejtmanek, J., Doumerc, J. P. Influence of the donor density on the photoelectrochemical properties of the magnetoplumbite PbFe12O19. Journal of Inorganic and General Chemistry540 (1986) 205-211. https://doi.org/10.1002/chin.198707017
[72] Široký, P. Višňovský, Š. Magneto-optical properties of Ga-substituted magnetoplumbites. Czechoslovak Journal of Physics B 37 (1987) 116-121. https://doi.org/10.1007/BF01597886
[73] Štěpánková, H., Englich, J., Novák, P., Sedlák, B., Pfeffer, M. NMR spectra of 57Fe in hexagonal ferrites with magnetoplumbite structure. Hyperfine Interactions 50 (1989) 639-643. https://doi.org/10.1007/BF02407702
[74] Albanese, G., Watts, B. E,,Leccabue, F., Díaz-Castañón, S. Mössbauer and magnetic studies of PbFe12-xCrxO19 hexagonal ferrites. Journal of Magnetism and Magnetic Materials 184 (1998) 337-343. https://doi.org/10.1016/S0304-8853(97)01162-1
[75] Albanese, G., Díaz-Castañón, S. Leccabue, F., Watts, B. E. Mössbauer and magnetic investigation of scandium and indium substituted PbFe12O19 hexagonal ferrite. Journal of Materials Science 35 (2000) 4415-4420. https://doi.org/10.1023/A:1004869310024
[76] FalohGandarilla J. C., Díaz-Castañón, S,,SuárezAlmodovar, N. Activation volume and coercivity in aluminum-substituted Pb-M hexaferrites. Journal of Magnetism and Magnetic Materials 222 (2000) 271-276. https://doi.org/10.1016/S0304-8853(00)00431-5
[77] Faloh-Gandarilla J, C., Díaz-Castañón, S., Leccabue, F. Magnetic viscosity and activation volume in chromium substituted Pb-M hexaferrite. physica status solidi (B) Basic Research 242 (2005) 1784-1787. https://doi.org/10.1002/pssb.200461836
[78] Hussain, S., Maqsood, A. Structural and electrical properties of Pb-doped Sr-hexa ferrites. Journal of Alloys and Compounds 466 (2008) 293-298. https://doi.org/10.1016/j.jallcom.2007.11.074
[79] Guerrero-Serrano, A, L. Pérez-Juache ,T., Mirabal-García, M., Matutes-Aquino, J. A., Palomares-Sánchez, S. A. Effect of barium on the properties of lead hexaferrite. Journal of Superconductivity and Novel Magnetism 24 (2011) 2307-2312. https://doi.org/10.1007/s10948-011-1181-x
[80] Hussain, S., Shah, N. A., Maqsood, A., Ali, A., Naeem, M., Syed W. A. A. Characterization of Pb-doped Sr-ferrites at room temperature. Journal of Superconductivity and Novel Magnetism24 (2011) 1245-1248. https://doi.org/10.1007/s10948-010-1115-z
[81] Guerrero-Serrano, A, L., Palomares-Sánchez, S. A., Mirabal-García, M., Matutes-Aquino, J. A. Magneto-structural characterization of strontium substituted lead hexaferrite. Journal of Superconductivity and Novel Magnetism 25 (2012) 1223-1228. https://doi.org/10.1007/s10948-012-1411-x
[82] Na, E. H., Lee, J.-H., Ahn, S.-J., Hon, K.-P., Koo, Y. M., Jang, H. M. Local spin reversal and associated magnetic responses in Ga-substituted Pb-hexaferrites. Journal of Magnetism and Magnetic Materials 324 (2012) 2866-2870. https://doi.org/10.1016/j.jmmm.2012.04.031
[83] Haq, A., Anis-ur-Rehman, M., Malik, M. A. Structural and electrical transport properties of proficient Ba–Pbnanoferrites. PhysicaScripta 85 (2012) 035602. https://doi.org/10.1088/0031-8949/85/03/035602
[84] Haq, A., Anis-ur-Rehman, M., Malik, M. A. Effect of Pb on structural and magnetic properties of Ba-hexaferrite. Physica B 407 (2012) 822-826. https://doi.org/10.1016/j.physb.2011.11.038
[85] Ullah, Z., Atiq, S., Naseem, S. Influence of Pb doping on structural, electrical and magnetic properties of Sr-hexaferrites. Journal of Alloys and Compounds 555 (2013) 263-267. https://doi.org/10.1016/j.jallcom.2012.12.061
[86] Ganegoda, H., Kaduk, J. A., Segre, C. U. X-ray powder diffraction refinement of PbTi(1−x)FexO(3−δ) solid solution series. Powder Diffraction 28 (2013) 238-245. https://doi.org/10.1017/S0885715613000511
[87] Na, E. H., Song, S., Koo, Y.-M., Jang, H. Relaxor-like improper ferroelectricity induced by Si·Sj-type collinear spin ordering in a M-type hexaferrite PbFe6Ga6O19. ActaMaterialia 61 (2013) 7705-7711. https://doi.org/10.1016/j.actamat.2013.09.007
[88] Sharbati, A., Mola, J., Khani, J. Influence of Ho substitution on structural, magnetic and microwave absorption properties of PbM-type hexaferrites nanoparticles. Journal of Materials Science: Materials in Electronics 25 (2014) 244-248. https://doi.org/10.1007/s10854-013-1578-3
[89] Zhou, W. P., Wang, L. Y., Song, Y. Q., Fang, Y. Q., Wang, D. H., Cao, Q. Q., Du, Y. W. Magnetoelectric effect in PbCoTiFe10O19 multiferroic ceramic. Ceramics International 40 (2014) 15737-15742. https://doi.org/10.1016/j.ceramint.2014.07.097
[90] Guerrero-Serrano, A. L., Mirabal-García, M., Palomares-Sánchez, S. A. Synthesis and study of the lanthanum substitution in the lead M-type hexaferrite. Journal of Superconductivity and Novel Magnetism 27 (2014) 1709-1713. https://doi.org/10.1007/s10948-014-2489-0
[91] Hooda, A., Sanghi, S., Agarwal, A., Dahiya, R. Crystal structure refinement, dielectric and magnetic properties of Ca/Pb substituted SrFe12O19 hexaferrites. Journal of Magnetism and Magnetic Materials 387 (2015) 46-51. https://doi.org/10.1016/j.jmmm.2015.03.078
[92] Guerrero, A. L. Mirabal-García, M., Palomares-Sánchez, S. A., Martínez, J. R. Effect of Pb on the magnetic interactions of the M-type hexaferrites. Journal of Magnetism and Magnetic Materials 399 (2016) 41-45. https://doi.org/10.1016/j.jmmm.2015.09.052
[93] Haq, A., Tufail, M., Anis-ur-Rehman, M. Structural, electrical, and magnetic properties of BaFe12−xPbxO19 hexaferrite. Journal of Superconductivity and Novel Magnetism (2016). In Press.
[94] Vinnik, D. A., Gudkova, S. A., Niewa, R. Growth of lead and aluminum substituted barium hexaferrite single crystals from lead oxide flux. Materials Science Forum 843 (2016) 3-9. https://doi.org/10.4028/www.scientific.net/MSF.843.3
[95] Tan, G.-L., Sheng, H.-H. Multiferroism and colossal magneto-capacitance effect of La0.2Pb0.7Fe12O19 ceramics. Acta Materialia 121 (2016) 144-151. https://doi.org/10.1016/j.actamat.2016.08.083
[96] Jin, J., Liu, Y., Drew, M. G. B., Liu, Y. Preparation and characterizations of Ba1−xPbxFe12O19/polypyrrole composites. Journal of Materials Science: Materials in Electronics 28 (2017) 11325–11331. https://doi.org/10.1007/s10854-017-6925-3
[97] Jaffari, G. H., Bilal, M., Rahman, J. U., Lee, S. Formation of multiferroic. PbTiO3/PbFe12O19 composite by exceeding the solubility limit of Fe in PbTiO3.Physica B: Condensed Matter 520 (2017) 139-147. https://doi.org/10.1016/j.physb.2017.06.035
[98] Tan, G.-L., Sheng, H.-H. Multiferroic La0.2Pb0.7Fe12O19 ceramics: Ferroelectricity, ferromagnetism and colossal magneto-capacitance effect. Data in Brief 10 (2017) 69-74. https://doi.org/10.1016/j.dib.2016.11.067
[99] Baykal, A., Yokuş, S., Güner, S., Güngüneş, H., Sözeri, H., Amir, Md. Magneto-optical properties and Mössbauer investigation of BaxSryPbzFe12O19 hexaferrites. Ceramics International 43 (2017) 3475-3482. https://doi.org/10.1016/j.ceramint.2016.10.013
[100] Kumar, P., Gaur, A., Kotnala, R. Magneto-electric response in Pb substituted M-type barium-hexaferrite. Ceramics International 43 (2017) 1180-1185. https://doi.org/10.1016/j.ceramint.2016.10.060
[101] Baykal, A., Ünver, İ. S., Topal, U., Sözeri, H. Pb substituted Ba,Sr-hexaferrite nanoparticles as high quality microwave absorbers. Ceramics International (2017). In Press. https://doi.org/10.1016/j.ceramint.2017.07.134
[102] Rowley, S. E, Vojta, T., Jones, A. T., guo, W., Oliveira, J., Morrison, F. D., Lindfield, N., BaggioSaitovitch, E., Watts, B. E., Scott, J. F. Quantum percolation phase transition and magnetoelectric dipole glass in hexagonal ferrites. Physical Review B 96 (2017) 020407. https://doi.org/10.1103/PhysRevB.96.020407
[103] Zainullina, V., Zhukov, V., Zhukovskii. V. Quantum-chemical calculation of the electronic structure and ionic conductivity of lead hexaferrite with a magnetoplumbite structure. Journal of Structural Chemistry 42 (2001) 705-710. https://doi.org/10.1023/A:1017948812398
[104] Sun, W., Zhang, L., Liu, J., Wang, H., Zuo, Y., Bu, Y. First-principle study of the electronic structures and optical properties of six typical hexaferrites. Computational Materials Science 105 (2015) 27-31. https://doi.org/10.1016/j.commatsci.2015.04.021