The Organic Charge-Modulated Field-Effect Transistor: a Flexible Platform for Application in Biomedical Analyses

$28.50

The Organic Charge-Modulated Field-Effect Transistor: a Flexible Platform for Application in Biomedical Analyses

S. Lai, A. Spanu, P. Cosseddu, A. Bonfiglio

Organic device-based sensors are currently being extensively investigated as key elements in easy-to-use, portable platforms for life science and healthcare. Filling the gap between laboratory environment and real application scenarios poses several challenges that researchers must address in order to meet the requirements for the realization of low-cost and efficient devices for Point-of-Care applications. Here we report a specific device architecture, namely the Organic Charge-Modulated Field-Effect Transistor (OCMFET), that represents a convenient option for the development of several kinds of electronic biosensors and bio-interfaces. A complete description of the OCMFET working principle will be provided, as well as its peculiar properties, which make it a unique device in the (bio)sensing field. Application of OCMFET principle for biochemical and biophysical sensor will be also discussed.

Keywords
Organic Biosensors, Field-Effect-Based Biosensor, DNA Sensing, pH Sensing, Cell Interface, Pharmacology

Published online 9/20/2019, 18 pages

Citation: S. Lai, A. Spanu, P. Cosseddu, A. Bonfiglio, The Organic Charge-Modulated Field-Effect Transistor: a Flexible Platform for Application in Biomedical Analyses, Materials Research Foundations, Vol. 56, pp 97-114, 2019

DOI: https://doi.org/10.21741/9781644900376-3

Part of the book on Organic Bioelectronics for Life Science and Healthcare

References
[1] P.M. Levine, P. Gong, R. Levicky, K. L. Shepard, Active CMOS Sensor Array for Electrochemical Biomolecular Detection, IEEE J. Solid-State Circuits 43 (2008),1859–1871. https://doi.org/10.1109/JSSC.2008.925407
[2] A. Manickam, A. Chevalier, M. McDermott, A. D. Ellington, A. Hassibi, A CMOS Electrochemical Impedance Spectroscopy (EIS) Biosensor Array. IEEE Trans. Biomed. Circuits Syst. 4 (2010), 379–390. https://doi.org/10.1109/TBCAS.2010.2081669
[3] M. Schienle, C. Paulus, A. Frey, F. Hofmann, B. Holzapfl, P. Schindler-bauer, R. Thewes, A Fully Electronic DNA Sensor With 128 Positions and In-Pixel A/D Conversion, IEEE J. Solid-State Circuits, 39 (2004), 2438–2445. https://doi.org/10.1109/JSSC.2004.837084
[4] K.-H. Lee, J. O. Lee, S. Choi, J.-B Yoon, G.-H. Cho, A CMOS label-free DNA sensor using electrostatic induction of molecular charges, Biosens. Bioelectron. 31(2011), 343–348. https://doi.org/10.1016/j.bios.2011.10.042
[5] C. Stagni, C. Guiducci, L. Benini, S. Carrara, C. Paulus, M. Schienle, M. Augustyniak, R. Thewes, CMOS DNA Sensor Array With Integrated A/D Conversion Based on Label-Free Capacitance Measurement, IEEE J. Solid-State Circuits 41 (2006), 2956–2964. https://doi.org/10.1109/JSSC.2006.884867
[6] E. Anderson, J. Daniels, H. Yu, T. Lee, N. Pourmand, A Label-free CMOS DNA Microarray based on Charge Sensing. In I2MTC 2008 – IEEE Instrumentation and Measurement Technology Conference, 2008. https://doi.org/10.1109/IMTC.2008.4547305
[7] J. M. Rothberg, et al., An integrated semiconductor device enabling non-optical genome sequencing, Nature 475 (2011), 348–352. https://doi.org/10.1038/nature10242
[8] C. Bartic, B. Palan, A. Campitelli, G. Borghs, Monitoring pH with organic-based field-effect transistors, Sens. Actuator B-Chem 83 (2002), 115-122. https://doi.org/10.1016/S0925-4005(01)01053-X
[9] Q. Zhang, V. Subramanian, DNA hybridization detection with organic thin film transistors: Toward fast and disposable DNA microarray chips, Biosens. Bioelectron. 22 (2007), 3182–3187. https://doi.org/10.1016/j.bios.2007.02.015
[10] H. U. Khan, M. E. Roberts, O. Johnson, R. Förch, W. Knoll, Z. Bao, In Situ, Label-Free DNA Detection Using Organic Transistor Sensors, Adv. Mat. 22 (2010), 4452–4456. https://doi.org/10.1002/adma.201000790
[11] L. Kergoat, B. Piro, M. Berggren, M.-C. Pham, A. Yassar, G. Horowitz, DNA detection with a water-gated organic field-effect transistor, Org. Electron. 13 (2012), 1-6. https://doi.org/10.1016/j.orgel.2011.09.025
[12] C. Bartic, A. Campitelli, and S. Borghs, Field-effect detection of chemical species with hybrid organic/inorganic transistors, Appl. Phys. Lett. 82 (2003), 475-477. https://doi.org/10.1063/1.1527698
[13] M. Y. Mulla, E. Tuccori, M. Magliulo, G. Lattanzi, G. Palazzo, K. Persaud, L. Torsi, Capacitance-modulated transistor detects odorant binding protein chiral interactions. Nat. Commun 6 (2015), 6010. https://doi.org/10.1038/ncomms7010
[14] M. Y. Mulla, P. Seshadri, L. Torsi, K. Manoli, A. Mallardi, N. Ditaranto, M. V. Santacroce, C. Di Franco, G. Scamarcio M. Magliulo, UV crosslinked poly(acrylic acid): a simple method to bio-functionalize electrolyte-gated OFET biosensors, J. Mater. Chem. B 3 (2015), 5049–5057. https://doi.org/10.1039/C5TB00243E
[15] M. D. Angione, S. Cotrone, M. Magliulo, A. Mallardi, D. Altamura, C. Giannini, N. Cioffi, L. Sabbatini, E. Fratini, P. Baglioni, G. Scamarcio, G. Palazzo, L. Torsi, Proc. Natl. Acad. Sci. U.S.A. 109 (2012), 6429-6434. https://doi.org/10.1073/pnas.1200549109
[16] M. D. Angione, M. Magliulo, S. Cotrone, A. Mallardi, D. Altamura, C. Giannini, N. Cioffi, L. Sabbatini, D. Gobeljic, G. Scamarcio, G. Palazzo, L. Torsi, Volatile general anesthetic sensing with organic field-effect transistors integrating phospholipid membranes, Biosens. Bioelectron. 40 (2013) 303-307. https://doi.org/10.1016/j.bios.2012.07.068
[17] M. Medina-Sánchez, C. Martínez-Domingo, E. Ramon, A. Merkoçi, An Inkjet-Printed Field-Effect Transistor for Label-Free Biosensing, Adv. Funct. Mater. 24 (2014), 6291–6302. https://doi.org/10.1002/adfm.201401180
[18] M. Barbaro, A. Bonfiglio, L. Raffo, A Charge-Modulated FET for Detection of Biomolecular Processes: Conception, Modeling, and Simulation, IEEE Trans. Electron Devices 53 (2006), 158-166. https://doi.org/10.1109/TED.2005.860659
[19] G. Horowitz, P. Lang, M. Mottaghi, H. Aubin, Extracting Parameters from the Current–Voltage Characteristics of Organic Field‐Effect Transistors, Adv. Funct. Mater. 14 (2004), 1069-1074. https://doi.org/10.1002/adfm.200305122
[20] W. J. Wall, “Techniques for DNA Analysis”, in Ullmann’s Encyclopedia of Industrial Chemistry, Wiley-VCH Verlag GmbH & Co. KGaA, 2000.
[21] M. Demelas, S. Lai, G. Casula, E. Scavetta, M. Barbaro, A. Bonfiglio, “An organic, charge-modulated field effect transistor for DNA detection”, Sens. Actuator B-Chem 171 (2012), 198-203. https://doi.org/10.1016/j.snb.2012.03.007
[22] S. Lai, M. Demelas, G. Casula, P. Cosseddu, M. Barbaro, A. Bonfiglio, “Ultralow Voltage, OTFT-Based Sensor for Label-Free DNA Detection”, Adv. Mater 25 (2013), 103–107. https://doi.org/10.1002/adma.201202996
[23] S. Lai, M. Barbaro, A. Bonfiglio, “Tailoring the sensing performances of an OFET-based biosensor”, Sens. Actuator B-Chem 233 (2016), 314–319. https://doi.org/10.1016/j.snb.2016.04.095
[24] P. Cosseddu, S. Lai, M. Barbaro, A. Bonfiglio, Ultra-low voltage, organic thin film transistors fabricated on plastic substrates by a highly reproducible process, Appl. Phys. Lett. 100 (2012), 093305. https://doi.org/10.1063/1.3691181
[25] S. Lai, M. Barbaro, A. Bonfiglio, The role of polarization-induced reorientation of DNA strands on organic field-effect transistor-based biosensors sensitivity at high ionic strength, Appl. Phys. Lett. 107 (2015), 103301. https://doi.org/10.1063/1.4930303
[26] U. Rant, K. Arinaga, S. Fujita, N. Yokoyama, G. Abstreiter, M. Tornow, Dynamic electrical switching of DNA layers on a metal surface, Nano Lett. 4 (2004), 2441-2445. https://doi.org/10.1021/nl0484494
[27] U. Rant, K. Arinaga, S. Fujita, N. Yokoyama, G. Abstreiter, M. Tornow, Electrical manipulation of oligonucleotides grafted to charged surfaces, Org. Biomol. Chem. 4 (2006), 3448-3455. https://doi.org/10.1039/b605712h
[28] Cogollo, J. F. S., Tedesco, M., Martinoia, S., Raiteri, R. A new integrated system combining atomic force microscopy and micro-electrode array for measuring the mechanical properties of living cardiac myocytes. Biomed. Microdevices 13, 613–621 (2011). https://doi.org/10.1007/s10544-011-9531-9
[29] Chiappalone, M., Bove, M., Vato, A., Tedesco, M., Martinoia, S. Dissociated cortical networks show spontaneously correlated activity patterns during in vitro development. Brain Res. 1093, 41–53 (2006). https://doi.org/10.1016/j.brainres.2006.03.049
[30] Berdondini, L. et al. Active pixel sensor array for high spatio-temporal resolution electrophysiological recordings from single cell to large scale neuronal networks. Lab Chip 9, 2644–51 (2009). https://doi.org/10.1039/b907394a
[31] M. Frega, M. Tedesco, P. Massobrio, M. Pesce, S. Martinoia, Network dynamics of 3D engineered neuronal cultures: a new experimental model for in-vitro electrophysiology. 1–14 (2014). https://doi.org/10.1038/srep05489
[32] A. Spanu, S. Lai, P- Cosseddu, M. Tedesco, S. Martinoia, A. Bonfiglio, An organic transistor-based system for reference-less electrophysiological monitoring of excitable cells. Sci. Rep. 5, 8807 (2015). https://doi.org/10.1038/srep08807
[33] S. Martinoia, N. Rosso, M. Grattarola, L. Lorenzelli, B. Margesin, M. Zen, Development of ISFET array-based microsystems for bioelectrochemical measurements of cell populations. Biosens. Bioelectron. 16, 1043–1050 (2001). https://doi.org/10.1016/S0956-5663(01)00202-0
[34] A. Spanu, F. Viola, S. Lai, P. Cosseddu, P. C. Ricci, A. Bonfiglio, A reference-less pH sensor based on an organic field effect transistor with tunable sensitivity. Org. Electron. 48, 188–193 (2017). https://doi.org/10.1016/j.orgel.2017.06.010