Biosensing with Electrolyte Gated Organic Field Effect Transistors


Biosensing with Electrolyte Gated Organic Field Effect Transistors

Carlo Augusto Bortolotti, Marcello Berto, Matteo Sensi, Michele Di Lauro, Fabio Biscarini

Electrolyte Gated Organic Field Effect Transistors (EGOFETs) are rapidly emerging as novel players in the field of biosensing: they allow ultra-sensitive, label-free and fast response, and can be employed to sense very diverse analytes, from small molecules to large multimeric proteins. Here, we present the current level of understanding of the working mechanism of EGOFETs, and review some of the most recent and relevant applications as sensors for healthcare and life sciences, discussing advantages and limitations of this technology. EGOFETs appear as a powerful sensing platform that can be readily adapted to the detection of a wide range of biologically relevant species.

EGOFET, Biosensor, Immunoassays, Surface Chemistry, Double Layer

Published online 9/20/2019, 26 pages

Citation: Carlo Augusto Bortolotti, Marcello Berto, Matteo Sensi, Michele Di Lauro, Fabio Biscarini, Biosensing with Electrolyte Gated Organic Field Effect Transistors, Materials Research Foundations, Vol. 56, pp 71-96, 2019


Part of the book on Organic Bioelectronics for Life Science and Healthcare

[1] D. T. Simon, E. O. Gabrielsson, K. Tybrandt, and M. Berggren, “Organic Bioelectronics: Bridging the Signaling Gap between Biology and Technology,” Chem. Rev., vol. 116, no. 21, pp. 13009–13041, Nov. 2016.
[2] A. M. Pappa, O. Parlak, G. Scheiblin, P. Mailley, A. Salleo, and R. M. Owens, “Organic Electronics for Point-of-Care Metabolite Monitoring,” Trends Biotechnol., vol. 36, no. 1, pp. 45–59, 2017.
[3] M. J. Panzer and C. D. Frisbie, “Exploiting ionic coupling in electronic devices: Electrolyte-gated organic field-effect transistors,” Adv. Mater., vol. 20, no. 16, pp. 3176–3180, 2008.
[4] J. Rivnay, S. Inal, A. Salleo, R. M. Owens, M. Berggren, and G. G. Malliaras, “Organic electrochemical transistors,” Nat. Rev. Mater., vol. 3, no. 2, p. 17086, Jan. 2018.
[5] S. H. Kim, K. Hong, W. Xie, K. H. Lee, S. Zhang, T. P. Lodge, and C. D. Frisbie, “Electrolyte-gated transistors for organic and printed electronics,” Advanced Materials, vol. 25, no. 13. pp. 1822–1846, 04-Apr-2013.
[6] M. Di Lauro, S. Casalini, M. Berto, A. Campana, T. Cramer, M. Murgia, M. Geoghegan, C. A. Bortolotti, and F. Biscarini, “The Substrate is a pH-Controlled Second Gate of Electrolyte-Gated Organic Field-Effect Transistor,” ACS Appl. Mater. Interfaces, vol. 8, no. 46, pp. 31783–31790, Nov. 2016.
[7] L. Torsi, M. Magliulo, K. Manoli, and G. Palazzo, “Organic field-effect transistor sensors: a tutorial review,” Chem. Soc. Rev., vol. 42, no. 22, p. 8612, 2013.
[8] F. Buth, D. Kumar, M. Stutzmann, and J. A. Garrido, “Electrolyte-gated organic field-effect transistors for sensing applications,” Appl. Phys. Lett., vol. 98, no. 15, pp. 2009–2012, 2011.
[9] S. Casalini, F. Leonardi, T. Cramer, and F. Biscarini, “Organic field-effect transistor for label-free dopamine sensing,” Org. Electron., vol. 14, no. 1, pp. 156–163, Jan. 2013.
[10] M. Y. Mulla, E. Tuccori, M. Magliulo, G. Lattanzi, G. Palazzo, K. Persaud, and L. Torsi, “Capacitance-modulated transistor detects odorant binding protein chiral interactions,” Nat. Commun., vol. 6, p. 6010, Jan. 2015.
[11] T. T. K. Nguyen, T. N. Nguyen, G. Anquetin, S. Reisberg, V. Noël, G. Mattana, J. Touzeau, F. Barbault, M. C. Pham, and B. Piro, “Triggering the Electrolyte-Gated Organic Field-Effect Transistor output characteristics through gate functionalization using diazonium chemistry: Application to biodetection of 2,4-dichlorophenoxyacetic acid,” Biosens. Bioelectron., vol. 113, no. April, pp. 32–38, 2018.
[12] B. Piro, D. Wang, D. Benaoudia, A. Tibaldi, G. Anquetin, V. Noël, S. Reisberg, G. Mattana, and B. Jackson, “Versatile transduction scheme based on electrolyte-gated organic field-effect transistor used as immunoassay readout system,” Biosens. Bioelectron., vol. 92, no. November 2016, pp. 215–220, 2017.
[13] C. Diacci, M. Berto, M. Di Lauro, E. Bianchini, M. Pinti, D. T. Simon, F. Biscarini, and C. A. Bortolotti, “Label-free detection of interleukin-6 using electrolyte gated organic field effect transistors,” Biointerphases, vol. 12, no. 5, p. 05F401-6, 2017.
[14] M. Berto, C. Diacci, R. D’Agata, M. Pinti, E. Bianchini, M. Di Lauro, S. Casalini, A. Cossarizza, M. Berggren, D. Simon, G. Spoto, F. Biscarini, and C. A. Bortolotti, “EGOFET Peptide Aptasensor for Label-Free Detection of Inflammatory Cytokines in Complex Fluids,” Adv. Biosyst., vol. 1700072, p. 1700072, 2017.
[15] M. Magliulo, D. De Tullio, I. Vikholm-Lundin, W. M. Albers, T. Munter, K. Manoli, G. Palazzo, and L. Torsi, “Label-free C-reactive protein electronic detection with an electrolyte-gated organic field-effect transistor-based immunosensor,” Anal. Bioanal. Chem., vol. 408, no. 15, pp. 3943–3952, Jun. 2016.
[16] S. Casalini, A. C. Dumitru, F. Leonardi, C. A. Bortolotti, E. T. Herruzo, A. Campana, R. F. De Oliveira, T. Cramer, R. Garcia, and F. Biscarini, “Multiscale sensing of antibody-antigen interactions by organic transistors and single-molecule force spectroscopy,” ACS Nano, vol. 9, no. 5, 2015.
[17] P. Seshadri, K. Manoli, N. Schneiderhan-Marra, U. Anthes, P. Wierzchowiec, K. Bonrad, C. Di Franco, and L. Torsi, “Low-picomolar, label-free procalcitonin analytical detection with an electrolyte-gated organic field-effect transistor based electronic immunosensor,” Biosens. Bioelectron., vol. 104, no. October 2017, pp. 113–119, Dec. 2017.
[18] P. Ko Ferrigno, “Non-antibody protein-based biosensors,” Essays Biochem., vol. 60, no. 1, pp. 19–25, 2016.
[19] A. D. Keefe, S. Pai, and A. Ellington, “Aptamers as therapeutics.,” Nat. Rev. Drug Discov., vol. 9, no. 7, pp. 537–550, 2010.
[20] K. Škrlec, B. Štrukelj, and A. Berlec, “Non-immunoglobulin scaffolds: a focus on their targets,” Trends Biotechnol., vol. 33, no. 7, pp. 408–418, Jul. 2015.
[21] S. Reverdatto and D. S. B. and A. Shekhtman, “Peptide Aptamers: Development and Applications,” Current Topics in Medicinal Chemistry, vol. 15, no. 12. pp. 1082–1101, 2015.
[22] S. P. White, S. Sreevatsan, C. D. Frisbie, and K. D. Dorfman, “Rapid, Selective, Label-Free Aptameric Capture and Detection of Ricin in Potable Liquids Using a Printed Floating Gate Transistor,” ACS Sensors, vol. 1, no. 10, pp. 1213–1216, 2016.
[23] M. Magliulo, A. Mallardi, M. Y. Mulla, S. Cotrone, B. R. Pistillo, P. Favia, I. Vikholm-Lundin, G. Palazzo, and L. Torsi, “Electrolyte-Gated Organic Field-Effect Transistor Sensors Based on Supported Biotinylated Phospholipid Bilayer,” Adv. Mater., vol. 25, no. 14, pp. 2090–2094, Apr. 2013.
[24] M. Magliulo, A. Mallardi, R. Gristina, F. Ridi, L. Sabbatini, N. Cioffi, G. Palazzo, and L. Torsi, “Part per Trillion Label-Free Electronic Bioanalytical Detection,” Anal. Chem., vol. 85, no. 8, pp. 3849–3857, Apr. 2013.
[25] S. Lai, F. A. Viola, P. Cosseddu, and A. Bonfiglio, “Floating gate, organic field-effect transistor-based sensors towards biomedical applications fabricated with large-area processes over flexible substrates,” Sensors (Switzerland), vol. 18, no. 3, pp. 1–12, 2018.
[26] L. Kergoat, B. Piro, M. Berggren, M. C. Pham, A. Yassar, and G. Horowitz, “DNA detection with a water-gated organic field-effect transistor,” Org. Electron., vol. 13, no. 1, pp. 1–6, 2012.
[27] C. Suspène, B. Piro, S. Reisberg, M.-C. Pham, H. Toss, M. Berggren, A. Yassar, and G. Horowitz, “Copolythiophene-based water-gated organic field-effect transistors for biosensing,” J. Mater. Chem. B, vol. 1, no. 15, p. 2090, 2013.
[28] M. Berto, S. Casalini, M. Di Lauro, S. L. Marasso, M. Cocuzza, D. Perrone, M. Pinti, A. Cossarizza, C. F. Pirri, D. T. Simon, M. Berggren, F. Zerbetto, C. A. Bortolotti, and F. Biscarini, “Biorecognition in Organic Field Effect Transistors Biosensors: The Role of the Density of States of the Organic Semiconductor,” Anal. Chem., vol. 88, no. 24, pp. 12330–12338, Dec. 2016.
[29] S. P. White, K. D. Dorfman, and C. D. Frisbie, “Label-free DNA sensing platform with low-voltage electrolyte-gated transistors,” Anal. Chem., vol. 87, no. 3, pp. 1861–1866, 2015.
[30] A. Operamolla and G. Farinola, “Molecular and Supramolecular Architectures of Organic Semiconductors for Field-Effect Transistor Devices and Sensors: A Synthetic Chemical Perspective,” European J. Org. Chem., vol. 2011, no. 3, pp. 423–450, Dec. 2011.
[31] L. Torsi, G. M. Farinola, F. Marinelli, M. C. Tanese, O. H. Omar, L. Valli, F. Babudri, F. Palmisano, P. G. Zambonin, and F. Naso, “A sensitivity-enhanced field-effect chiral sensor,” Nat. Mater., vol. 7, p. 412, Apr. 2008.
[32] M. Magliulo, B. R. Pistillo, M. Y. Mulla, S. Cotrone, N. Ditaranto, N. Cioffi, P. Favia, and L. Torsi, “PE-CVD of hydrophilic-COOH functionalized coatings on electrolyte gated field-effect transistor electronic layers,” Plasma Process. Polym., vol. 10, no. 2, pp. 102–109, 2013.
[33] P. Favia, E. Sardella, R. Gristina, and R. d’Agostino, “Novel plasma processes for biomaterials: Micro-scale patterning of biomedical polymers,” Surf. Coatings Technol., vol. 169–170, pp. 707–711, 2003.
[34] M. Y. Mulla, P. Seshadri, L. Torsi, K. Manoli, A. Mallardi, N. Ditaranto, M. V. Santacroce, C. Di Franco, G. Scamarcio, and M. Magliulo, “UV crosslinked poly(acrylic acid): a simple method to bio-functionalize electrolyte-gated OFET biosensors,” J. Mater. Chem. B, vol. 3, no. 25, pp. 5049–5057, 2015.
[35] G. Palazzo, D. De Tullio, M. Magliulo, A. Mallardi, F. Intranuovo, M. Y. Mulla, P. Favia, I. Vikholm-Lundin, and L. Torsi, “Detection Beyond Debye’s Length with an Electrolyte-Gated Organic Field-Effect Transistor,” Adv. Mater., vol. 27, no. 5, pp. 911–916, Feb. 2015.
[36] L. S. Wong, F. Khan, and J. Micklefield, “Selective covalent protein immobilization: Strategies and applications,” Chem. Rev., vol. 109, no. 9, pp. 4025–4053, 2009.
[37] S. Cotrone, M. Ambrico, H. Toss, M. D. Angione, M. Magliulo, A. Mallardi, M. Berggren, G. Palazzo, G. Horowitz, T. Ligonzo, and L. Torsi, “Phospholipid film in electrolyte-gated organic field-effect transistors,” Org. Electron. physics, Mater. Appl., vol. 13, no. 4, pp. 638–644, 2012.
[38] G. D. Bachand and C. D. Montemagno, “Constructing Organic/Inorganic NEMS Devices Powered by Biomolecular Motors,” Biomed. Microdevices, vol. 2, no. 3, pp. 179–184, Jun. 2000.
[39] P. Ghisellini, M. Caiazzo, A. Alessandrini, R. Eggenhöffner, M. Vassalli, and P. Facci, “Direct electrical control of IgG conformation and functional activity at surfaces,” Sci. Rep., vol. 6, p. 37779, Nov. 2016.
[40] I. P. Mahendra Wijaya, T. J. Nie, S. Gandhi, R. Boro, A. Palaniappan, G. W. Hau, I. Rodriguez, C. R. Suri, and S. G. Mhaisalkar, “Femtomolar detection of 2,4-dichlorophenoxyacetic acid herbicides via competitive immunoassays using microfluidic based carbon nanotube liquid gated transistor,” Lab Chip, vol. 10, no. 5, pp. 634–638, 2010.
[41] M. Demelas, S. Lai, A. Spanu, S. Martinoia, P. Cosseddu, M. Barbaro, and A. Bonfiglio, “Charge sensing by organic charge-modulated field effect transistors: application to the detection of bio-related effects,” J. Mater. Chem. B, vol. 1, no. 31, pp. 3811–3819, 2013.
[42] A. Spanu, S. Lai, P. Cosseddu, M. Tedesco, S. Martinoia, and A. Bonfiglio, “An organic transistor-based system for reference-less electrophysiological monitoring of excitable cells,” Sci. Rep., vol. 5, p. 8807, Mar. 2015.
[43] S. P. White, K. D. Dorfman, and C. D. Frisbie, “Operating and Sensing Mechanism of Electrolyte-Gated Transistors with Floating Gates: Building a Platform for Amplified Biodetection,” J. Phys. Chem. C, vol. 120, no. 1, pp. 108–117, Jan. 2016.
[44] M. S. Thomas, S. P. White, K. D. Dorfman, and C. D. Frisbie, “Interfacial Charge Contributions to Chemical Sensing by Electrolyte-Gated Transistors with Floating Gates,” J. Phys. Chem. Lett., vol. 9, no. 6, pp. 1335–1339, 2018.
[45] T. Cramer, A. Campana, F. Leonardi, S. Casalini, A. Kyndiah, M. Murgia, and F. Biscarini, “Water-gated organic field effect transistors – opportunities for biochemical sensing and extracellular signal transduction,” J. Mater. Chem. B, vol. 1, no. 31, p. 3728, 2013.