Organic Bioelectronic Transistors: From Fundamental Investigation of Bio-Interfaces to Highly Performing Biosensors


Organic Bioelectronic Transistors: From Fundamental Investigation of Bio-Interfaces to Highly Performing Biosensors

Eleonora Macchia, Rosaria A. Picca, Angelo Tricase, Cinzia Di Franco, Antonia Mallardi, Nicola Cioffi, Gaetano Scamarcio, Gerardo Palazzo, Luisa Torsi

Interfacing biomaterials to electronic devices is one of most challenging research field that has relevance for both fundamental studies and for the development of highly performing biosensors. Important aspects connected to electronic biosensors are discussed. In this chapter different electronic biosensors based on field effect transistors, including the Functional Bio-Interlayer sensing platform, are presented. Particular attention is paid to the biosensors operation mechanism and to its reflect on the device analytical figure of merits. The main features of thermodynamic of ligand–bioreceptor interaction confined at solid–liquid interfaces along with the strategies for biomolecule deposition on the biosensors transducer surface are presented.

Organic Transistors, Biosensors, Surface Confined Proteins, Functional Bio-Interlayers, Analytical Bioassay, Electronic Bio-Detection

Published online 9/20/2019, 70 pages

Citation: Eleonora Macchia, Rosaria A. Picca, Angelo Tricase, Cinzia Di Franco, Antonia Mallardi, Nicola Cioffi, Gaetano Scamarcio, Gerardo Palazzo, Luisa Torsi, Organic Bioelectronic Transistors: From Fundamental Investigation of Bio-Interfaces to Highly Performing Biosensors, Materials Research Foundations, Vol. 56, pp 1-70, 2019


Part of the book on Organic Bioelectronics for Life Science and Healthcare

[1] J. Rivnay, R.M. Owens, G:G. Malliaras, The Rise of Organic Bioelectronics. Chem. Mater. 26 (2014) 679-685. b) Rinay J., Inal S., Salleo A., Owens R.M., Berggren M., Malliaras G.G., Nat. Mater. Review 3 (2018), 17086.
[2] I. Willner, R. Baron, B. Willner, Integrated Nanoparticle-Biomolecule Systems for Biosensing and Bioelectronics. Biosens Bioelectron. 22 (2007) 1841-1852.
[3] D. Khodagholy, et al. Neurogrid: Recording Action Potentials from the Surface of the Brain. Nat. Neurosci. 18 (2014) 310-315.
[4] R.D. Grange, J.P. Thompson, D.G. Lambert, Radioimmunoassay, Enzyme And Non-Enzyme-Based Immunoassays. Br. J. Anaesth. 112 (2014) 213-216.
[5] Homola, J. Surface Plasmon Resonance Sensors for Detection of Chemical and Biological Species. Chem. Rev.108(2), 462-493 (2008).
[6] L. Anson, Membrane Protein Biophysics. Nature Insight 459 (2009) 343-385.
[7] M.Y. Mulla, et al. Capacitance-Modulated Transistor Detects Odorant Binding Protein Chiral Interactions. Nature Commun. 6:6010 (2015) 1-9.
[8] Wang, C., Dong, H., Hu, W., Liu, Y. & Zhu, D. Semiconducting π-Conjugated Systems in Field-Effect Transistors: A Material Odyssey of Organic Electronics. Chem. Rev.112 (2011) 2208–2267.
[9] L. Torsi, L., M. Magliulo, K. Manoli, G. Palazzo, Organic Field-Effect Transistor Sensors: a Tutorial Review. Chem. Soc. Rev. 42 (2013) 8612-8628.
[10] K. Manoli, et al. Printable Bioelectronics to Investigate Functional Biological Interfaces. Angew. Chem. Int. Ed. 54 (2015) 12562-12576.
[11] L. Torsi, A. Dodabalapur, L. Sabbatini, , P.G. Zambonin, Multi-Parameter Gas Sensors Based On Organic Thin-Film-Transistors. Sens. Actu. B67 (2000) 312–316.
[12] E. Macchia, et al. Organic Bioelectronics Probing Conformational Changes In Surface Confined Proteins. Scientific Reports 6 (2016) 1-12.
[13] F. Ebisawa, T. Kurokawa, S. Nara, Electrical Properties of Polyacetylene / Polysiloxane Interface. J. Appl. Phys. 54 (1983) 3255–3259.
[14] C. Wang, H. Dong, W. Hu, Y. Liu, D. Zhu, Semiconducting π-Conjugated Systems in Field-Effect Transistors: A Material Odyssey of Organic Electronics. Chem. Rev.112 (2011) 2208–2267.
[15] D. Tobjork, R. Osterbacka, Paper Electronics. Adv. Mater. 23 (2011) 1935-1961.
[16] G. Mattana, P. Cosseddu, B. Fraboni, G.G. Malliaras, J.P. Hinestroza, A. Bonfiglio, Organic electronics on natural cotton fibres. Organic Electronics 12 (2011) 2033-2039.
[17] L. Basirico, P. Cosseddu, A. Scida, B. Fraboni, G.G. Malliaras, A. Bonfiglio, Electrical Characteristics Of Ink-Jet Printed, All-Polymer Electrochemical Transistors. Organic Electronics 13 (2012) 244-248.
[18] M. Magliulo, et al. Printable and Flexible Electronics: from TFTs to Bioelectronic Devices. J. Mater. Chem. C.3 (2015) 12347–12363.
[19] L. Basirico, P. Cosseddu, B. Fraboni, A. Bonfiglio, Inkjet Printing Of Transparent, Flexible, Organic Transistors. Thin Solid Films 520 (2011) 1291-1294.
[20] S. M. Sze, K.K .Ng, Physics of semiconductor devices (John Wiley & Sons, ed. 3, 2006).
[21] D. Khodagholy, et al. High Transconduttance Organic Electrochemical Transistors. Nat. Commun. 4 (2013) 2133.
[22] H. Kim, et al. Electrolyte-Gated Transistors for Organic and Printed Electronics. Ad. Mater. 25 (2013) 1822-1846.
[23] M. Demelas, et al. Charge Sensing by Organic Charge-Modulated Field Effect Transistors: Application to the Detection of Bio-Related Effects. J. Mater. Chem. B1 (2013) 3811-3819.
[24] Magliulo, M., Manoli, K., Macchia, E., Palazzo, G. &Torsi, L. Tailoring Functional Interlayers in Organic Field-Effect Transistor Biosensors. Adv. Mater., DOI: 10.1002/adma.201403477 (2014).
[25] P. Bergveld, Thirty years of ISFETOLOGY. What happened in the past 30 years and what may happenin the next 30 years. Sensors and Actuators B88 (2003) 1–20.
[26] S. Lai, M. Demelas, G. Casula, P. Cosseddu, M. Barbaro, A. Bonfiglio, Ultralow Voltage, OTFT-Based Sensor for Label-Free DNA Detection. Adv. Mater.25 (2013) 103–107.
[27] M.L. Hammock, O. Knopfmacher, B.D. Naab, J.B.H Tok, Z. Bao, Investigation of Protein Detection Parameters using Nano-Functionalized Organic Field-Effect Transistors. ACS Nano 7 (2013) 3970- 3980.
[28] M.D. Angione, et al. Interfacial Electronic Effect in Functional Biolayers Integrated into Organic Field-Effect Transistors, PNAS 109 (2012) 6429-6434.
[29] L. Torsi, et al. A sensitivity-enhanced field-effect chiral sensor. Nat. Mater.7 (2008) 412–417.
[30] B. Crone, et al. Electronic sensing of vapors with organic transistors. Appl. Phys. Lett.78 (2001) 2229-2231.
[31] E. Macchia, et al. An Analytical Model for Bio-Electronic Organic Field-Effect Transistor Sensors. App. Phys. Lett. 103 (2013) 103301.
[32] F.N. Ishikawa, et al. A Calibration Method for Nanowire Biosensors to Suppress Device-to-Device Variation. ACS Nano 3 (2009) 3969-3976.
[33] F. Rusmini, Z. Zhong, J. Faijen, Protein Immobilization Strategies for Protein Biochips. Biomacromolecules 8 (2007) 1775-1789.
[34] P. Jonkheijm, D. Weinrich, H. Schroder, C.M. Niemeyer, H. Waldmann, Chemicals Strategies for Generating Protein Biochips. Angew. Chem. Int. Ed. 47 (2008), 9618-9647.
[35] H.J. Lee, Y. Yan, G. Marriott, R.M. Corn, Quantitative Functional Analysis Of Protein Complexes On Surfaces. J. Physiol. 563 (2005) 61-71.
[36] P. Stoliar, et al. DNA Adsorption Measured With Ultra-Thin Film Organic Field Effect Transistors. Biosens. and Bioelectron.24 (2009)2935–2938.
[37] N. Patel, et al. Immobilization of Protein Molecules onto Homogeneous and Mixed Carboxylate-Terminated Self-Assembled Monolayers. Langmuir 13 (1997) 6485-6490.
[38] J.W. Lee, S.J. Sim, S.M. Cho, J. Lee, Characterization of a self-assembled monolayer of thiol on a gold surface and the fabrication of a biosensor chip based on surface Plasmon resonance for detecting anti-GAD antibody. Biosensors and Bioelectronics 20 (2005) 1422–1427.
[39] G. MacBeath, S.L. Schreiber, Printing Proteins as Microarrays for High-Throughput Function Determination. Science 289 (2000) 1760-1763.
[40] T. Viitala, I. Vikholm, J. Peltonen, Protein Immobilization to a Partially Cross-Linked Organic Monolayer. Langmuir 16 (2000) 4953-4961.
[41] M.A. Jongsma, R.H. Litjens, Self-Assembling Protein Arrays on DNA Chips by Auto-Labeling Fusion Proteins With a Single DNA Address. Proteomics 6 (2006) 2650-2655.
[42] R. Wacker, H. Schroder, C.M. Niemeyer, Performance of Antibody Microarrays Fabricated by either DNA-Directed Immobilization, Direct Spotting, or Streptavidin-Biotin Attachment: a Comparative Study. Anal. Biochem. 330 (2004) 281-287.
[43] S.C. Rizzi, J.A. Hubbell, Recombinant Protein-co-PEG Networks as Cell-Adhesive and Proteolytically Degradable Hydrogel Matrixes. Part I: Development and Physicochemical Characteristics. Biomacromolecules 6 (2005) 1226-1228.
[44] C. Mateo, et al. Epoxy Sepabeads: a Novel Epoxy Support for Stabilization of Industrial Enzymes Via Very Intense Multipoint Covalent Attachment. Biotechnol. Prog.18 (2002) 629-634.
[45] J. Turkovà, Oriented Immobilization of Biologically Active Proteins as a Tool for Revealing Protein Interactions and Function. Journal of Chromatography B722 (1999) 11–31.
[46] S. Werner, W. Machleidt, Isolation of Precursors of Cytochrome Oxidase From Neurospora Crassa: Application of Subunit-Specific Antibodies and Protein a From Staphylococcus Aureus. Eur. J. Biochem. (1978) 90,99.
[47] M. Wilchek, E.A. Bayer, Introduction to Avidin-Biotin Technology. Methods Enzymol. 184 (1990) 1-746.
[48] M. Lehnert, et al. Adsorption and Conformation Behavior of Biotinylated Fibronectin on Streptavidin-Modified TiOx Surfaces Studied by SPR and AFM. Langmuir 27 (2011) 7743-7751.
[49] I. Vikholm-Lundin, et al. Cysteine-Tagged Chimeric Avidin Forms High Binding Capacity Layers Directly On Gold. Sens. Actuat. B-Chem 171 (2012) 440-448.
[50] J. Homola, Present and Future of Surface Plasmon Resonance. Biosensors. Anal. Bioanal. Chem. 377 (2003) 528–539.
[51] E.A.Vogler, Structure and Reactivity of Water at Biomaterial Surfaces. Adv. Colloid. Interfac. 74 (1998) 69–117.
[52] I.M. Klotz, Ligand–Receptor Energetics. Wiley: New York or Haynie DT (1997).
[53] A. Halperin, A. Buhot, E.B. Zhulina, On the Hybridization Isotherms of DNA Microarrays: the Langmuir Model and its Extensions. J. Phys. Condens. Matter18 (2006) S463–S490.
[54] D.K. Chattoraj, K.S. Birdi, Adsorption and the Gibbs Surface Excess. Plenum Press: New York; 257–298, 339–383 (1984).
[55] A. Adamson, A.P. Gast, Physical Chemistry of Surfaces (6th edn). Wiley: New York; 48–100, 90–430, 599–684 (2000).
[56] R. Sips, On the Structure of a Catalyst Surface. J. Chem. Phys. 16 (1948) 490-495
[57] S. Cazalbou, G Bertrand, C. Drouet, Tetracycline-Loaded Biomimetic Apatite: An Adsorption Study. J. Phys. Chem B119 (2015) 3014-3024.
[58] G. Oliviero, S. Federici, P. Colombi, P. Bergese, On the Difference of Equilibrium Constants of DNA Hybridization in Bulk Solution and at the Solid-Solution Interface. J. Mol. Recognit. 24 (2011) 182–187.
[59] A. Dodabalapur, L. Torsi, H. Katz, Organic Transistors: Two-Dimensional Transport And Improved Electrical Characteristics. Science 268 (1995), 270-271.
[60] G. Dacey, I. Ross, The field effect transistor. Bell System Technical Journal 34 (1955), 1149-1189.
[61] M. Riepl, M. Optimization Of Capacitive Affinity Sensors: Drift Suppression And Signal Amplification. Analytical Chimical Acta 392 (1999), 77-84.
[62] L.Torsi, A. Dodabalapur, H. Katz, An Analytical Model for Short Channel Organic Thin-Film Transistors. J. Appl. Phys. 78 (1995), 1088-1093.
[63] J. Zaumseil, K.W. Baldwin, J.A. Rogers, Contact Resistance in Organic Transistors that Use Source and Drain Electrodes Formed by Soft Contact Lamination. J. Appl. Phys. 93 (2003), 6117-6124.
[64] L. Torsi, et al. Contact Effects in Organic Thin-Film Transistor Sensors. Organ. Electron. 10 (2009), 233-239.
[65] M. Magliulo, et al. Structural and Morphological Study of a Poly(3-hexylthiophene)/Streptavidin Multilayer Structure Serving as Active Layer in Ultra-Sensitive OFET Biosensors. J. Phys. Chem. C118 (2014), 15853–15862.
[66] M.C. Sportelli, R.A. Picca, K. Manoli, M. Re, E. Pesce, L. Tapfer, C. Di Franco, N. Cioffi, L. Torsi, Applied Surface Science 420 (2017), 313-322.
[67] M.D. Angione et al., Biosensors and Bioelectronics 40 (2013), 303-307.
[68] G. Palazzo, M. Magliulo, A. Mallardi, M.D. Angione, D. Gobeljic, G. Scamarcio, E. Fratini, F. Ridi, L. Torsi, ACS Nano 8 (2014), 7834-7845.
[69] Magliulo, M. et al., Anal Chem. 85(2013), 3849-57.
[70] X. Zhou, J.M. Moran-Mirabal, H.G. Craighead, P.L. McEuen, Nat. Nanotechnol. 2 (2007), 185−190.
[71] A. Star, J.C.P. Gabriel, K. Bradley, G. Grüner, NanoLett. 3 (2003), 459−463.
[72] S.C. Lim, et al., ETRI J. 31 (2009), 647−652.
[73] S. Freitag, I. Le Trong, L. Klumb, P.S. Stayton, R.E. Stenkamp, Protein Sci. 6 (1997), 1157–1166.
[74] E. Macchia, M. Magliulo, K. Manoli, F. Giordano, G. Palazzo, L. Torsi, L. Organic Light EmittingMaterials and Devices XVIII, Proc. of SPIE 9183 (2014), 918302.
[75] F. Chiti, C.M. Dobson, Annu. Rev. Biochem. 75 (2006), 333-366.
[76] J.I. Peterson, G.G. Vurek, Science 224 (1984), 123-127.
[77] M. Lehnert, et al., Langmuir 27 (2011), 7743–7751.
[78] M.L. Jones, G.P. Kurzban, Biochemistry 34 (1995), 11750–11756.
[79] A. Bykhovski, W. Zhang, J. Jensen, D. Woolard, J. Phys. Chem. B117 (2013), 25−37.
[80] Grubmuller, H., Heymann, B. &Tavan, P. Science 271 (1996), 997-999.
[81] S. Izrailev, S. Stepaniants, M. Balsera, Y. Oono, K. Schulten, Biophys. J. 72 (1997), 1568–1581.
[82] F. London, Trans. Faraday Soc.33 (1937), 8-26.
[83] K.P. Pernstich et al., J. Appl. Phys. 96 (2004), 6431-6438.
[84] S.K. Possaner, K. Zojer, P. Pacher, E. Zojer, F. Schurrer, Adv. Funct. Mater. 19 (2009) , 958-967.
[85] A. Dezieck et al., Appl. Phys. Lett. 97 (2010), 013307.
[86] D. Alberga, G.F. Mangiatordi, L. Torsi, G. Lattanzi, J. Phys. Chem. C118 (2014), 8641-8655.
[87] Y.K. Lan, C.I. Huang, J. Phys. Chem. B112 (2008), 14857–14862.