Glycerol as a Green Solvent in Organic Reactions

$28.50

Glycerol as a Green Solvent in Organic Reactions

Navneet Kumar, Vimal Chandra Srivastava

Glycerol has recently emerged as a promising green solvent over conventional organic solvents including water owing to its favorable physicochemical properties for various applications. This chapter compiles and compares various common methods used for the synthesis of glycerol via various routes. A brief literature review of organic reactions which employ glycerol as a green solvent has been presented. Organic transformations in glycerol medium occur with or without any catalytic material. Glycerol has also been used as a hydrogen donor to perform hydrogenation reaction of organic compounds. Glycerol derivatives have been used as a green solvent for performing Suzuki cross-coupling, nucleophilic substitution, and asymmetric reduction reactions. Other than organic transformations, the applicability of glycerol in nanoparticles synthesis has also been discussed to elaborate its importance as a green solvent. The superiority of glycerol over other solvents has been explained in terms of its solubility, non-toxicity, availability and chemical reactivity.

Keywords
Glycerol, Organic Reactions, Green Solvent, Catalyst, Hydrogenation

Published online 8/20/2019, 22 pages

Citation: Navneet Kumar, Vimal Chandra Srivastava, Glycerol as a Green Solvent in Organic Reactions, Materials Research Foundations, Vol. 54, pp 202-223, 2019

DOI: https://doi.org/10.21741/9781644900314-9

Part of the book on Industrial Applications of Green Solvents

References
[1] Y. Gu, F. Jerome, Glycerol as a sustainable solvent for green chemistry, Green Chem. 12 (2010) 1127–1138. https://doi.org/10.1039/c001628d
[2] A. Wolfson, C. Dlugy, Y. Shotland, Glycerol as a green solvent for high product yields and selectivities, Environ. Chem. Lett. 5 (2007) 67–71. https://doi.org/10.1007/s10311-006-0080-z
[3] A. Lubineau, J. Auge, Water as solvent in organic synthesis, in: P. Knochel (Ed.), Modern solvents in organic synthesis, Springer-Verlag Berlin Heidelberg, 2003, pp 1-39. https://doi.org/10.1007/3-540-48664-x_1
[4] R.D. Rogers, K.R. Seddon, Ionic liquids-solvents of the future, Science. 302 (2003) 792-793.
[5] C.A. Eckert, B.L. Knutson, P.G. Debenedetti, Supercritical fluids as solvents for chemical and materials processing, Nature 383 (1996) 313–318. https://doi.org/10.1038/383313a0
[6] R. Bernini, E. Mincione, M. Barontini, F. Crisante, G. Fabrizi, A. Gambacorata, Dimethyl carbonate : an environmentally friendly solvent for hydrogen peroxide (H2O2)/ methyltrioxorhenium (CH3ReO3, MTO) catalytic oxidations, Tetrahedron 63 (2007) 6895-6900. https://doi.org/10.1016/j.tet.2007.04.039
[7] P. Arockiam, V. Poirier, C. Fischmeister, C. Bruneau, P.H. Dixneuf, Diethyl carbonate as a solvent for ruthenium catalysed C-H bond functionalisation, Green Chem. 11 (2009) 1871-1875. https://doi.org/10.1039/b913115a
[8] M.N. William, Green solvents for chemistry-perspectives and practice, Oxford University Press USA (2003).
[9] M. Perrut, Supercritical fluid applications : industrial developments and economic issues, Ind. Eng. Chem. Res. 39 (2000) 4531-4535. https://doi.org/10.1039/c1cc10620a
[10] A.E. Diaz-Alvarez, J. Francos, B. Lastra-Barreira, P. Crochet, V. Cadierno, Glycerol and derived solvents : new sustainable reaction media for organic synthesis, Chem. Commun. 47 (2011) 6208–6227. https://doi.org/10.1039/c1cc10620a
[11] M. Pagliaro, M. Rossi, M. Pagliaro, Glycerol : properties and production, RSC Green Chem. B. Ser. (2008) 1-18.
[12] P.U. Okoye, B.H. Hameed, Review on recent progress in catalytic carboxylation and acetylation of glycerol as a byproduct of biodiesel production, Renew. Sustain. Energ. Rev. 53 (2016) 558–574. https://doi.org/10.1016/j.rser.2015.08.064
[13] K. Sanford, G. Chotani, N. Danielson, J.A. Zahn, Scaling up of renewable chemicals, Curr. Opin. Biotechnol. 38 (2016) 112–122. https://doi.org/10.1016/j.copbio.2016.01.008
[14] A.E. Díaz-álvarez, V. Cadierno, Glycerol: A promising green solvent and reducing agent for metal-catalyzed transfer hydrogenation reactions and nanoparticles formation, Appl. Sci. 3 (2013) 55–69. https://doi.org/10.3390/app3010055
[15] S. Ahmed, Hydrogen from glycerol : A feasibility study, (2010) 34–37.
[16] H.W. Tan, A.R.A. Aziz, M.K. Aroua, Glycerol production and its applications as a raw material : A review, Renew. Sustain. Energ. Rev. 27 (2013) 118–127. https://doi.org/10.1016/j.rser.2013.06.035
[17] M.Y. Koh, T. Idaty, M. Ghazi, A review of biodiesel production from Jatropha curcas L . oil, Renew. Sustain. Energ. Rev. 15 (2011) 2240–2251. https://doi.org/10.1016/j.rser.2011.02.013
[18] M.S. Ardi, M.K. Aroua, N.A. Hashim, Progress, prospect and challenges in glycerol purification process : A review, Renew. Sustain. Energ. Rev. 42 (2015) 1164–1173. https://doi.org/10.1016/j.rser.2014.10.091
[19] M.K. Lam, K.T. Lee, A.R. Mohamed, Homogeneous, heterogeneous and enzymatic catalysis for transesterification of high free fatty acid oil (waste cooking oil) to biodiesel : A review, Biotechnol. Adv. 28 (2010) 500–518. https://doi.org/10.1016/j.biotechadv.2010.03.002
[20] A. Wolfson, C. Dlugy, Palladium-catalyzed Heck and Suzuki coupling in glycerol, Chem. Pap. 61 (2007) 228–232. https://doi.org/10.2478/s11696-007-0026-3
[21] L.C. Gonçalves, G.F. Fiss, G. Perin, D. Alves, R.G. Jacob, E.J. Lenardão, Glycerol as a promoting medium for cross-coupling reactions of diaryl diselenides with vinyl bromides, Tetrahedron 51 (2010) 6772–6775. https://doi.org/10.1016/j.tetlet.2010.10.107
[22] V.G. Ricordi, C.S. Freitas, G. Perin, E.J. Lenardão, R.G. Jacob, L. Savegnago, D. Alves, Glycerol as a recyclable solvent for copper-catalyzed cross-coupling reactions of diaryl diselenides with aryl boronic acids, Green Chem. 14 (2012) 1030–1034. https://doi.org/10.1039/c2gc16427b
[23] L.C.C. Gonçalves, D.B. Lima, P.M.Y. Borba, G. Perin, D. Alves, R.G. Jacob, E.J. Lenardão, Glycerol / CuI / Zn as a recyclable catalytic system for synthesis of vinyl sulfides and tellurides, Tetrahedron 54 (2013) 3475–3480. https://doi.org/10.1016/j.tetlet.2013.04.119
[24] D.M.L. Cabrera, F.M. Líbero, D. Alves, G. Perin, J. Eder, R.G. Jacob, D.M.L. Cabrera, F.M. Líbero, D. Alves, G. Perin, D. Alves, G. Perin, J. Eder, R.G. Jacob, Glycerol as a recyclable solvent in a microwave-assisted synthesis of disulfides, Green Chem. Lett. Rev. 5 (2012) 329-336. https://doi.org/10.1080/17518253.2011.631942
[25] Y.H. Vo, T.V Le, H.D. Nguyen, T.A. To, H.Q. Ha, A.T. Nguyen, A.N.Q. Phan, N.T.S. Phan, Synthesis of quinazolinones and benzazoles utilizing recyclable sulfated metal-organic framework-808 catalyst in glycerol as green solvent, J. Ind. Eng. Chem. 64 (2018) 107-115. https://doi.org/10.1016/j.jiec.2018.03.006
[26] Y. Zhang, K. Na, O.M. Yaghi, J. Jiang, F. Gandara, Superacidity in sulfated metal-organic framework-808, J. Am. Chem. Soc. 136 (2014) 12844–12847. https://doi.org/10.1021/ja507119n
[27] G. Perin, L.G. Mello, C.S. Radatz, L. Savegnago, D. Alves, R.G. Jacob, E.J. Lenardão, Green, catalyst-free thioacetalization of carbonyl compounds using glycerol as recyclable solvent, Tetrahedron Lett. 51 (2010) 4354–4356. https://doi.org/10.1016/j.tetlet.2010.06.049
[28] A.P. Ingale, S.M. Patil, S. V Shinde, Catalyst-free, efficient and one pot protocol for synthesis of nitriles from aldehydes using glycerol as green solvent, Tetrahedron Lett. 58 (2017) 4845–4848. https://doi.org/10.1016/j.tetlet.2017.11.032
[29] K.P. Nandre, J.K. Salunke, J.P. Nandre, V.S. Patil, A.U. Borse, S. V Bhosale, Glycerol mediated synthesis of 5-substituted 1 H -tetrazole under catalyst free conditions, Chin. Chem. Lett. 23 (2012) 161–164. https://doi.org/10.1016/j.cclet.2011.11.019
[30] H.R. Safaei, M. Shekouhy, S. Rahmanpur, A. Shirinfeshan, Glycerol as a biodegradable and reusable promoting medium for the catalyst-free one-pot three component synthesis of 4H-pyrans, Green Chem. 14 (2012) 1696–1704. https://doi.org/10.1039/c2gc35135h
[31] C.S. Radatz, R.B. Silva, G. Perin, E.J. Lenardão, R.G. Jacob, D. Alves, Catalyst-free synthesis of benzodiazepines and benzimidazoles using glycerol as recyclable solvent, Tetrahedron Lett. 52 (2011) 4132–4136. https://doi.org/10.1016/j.tetlet.2011.05.142
[32] A. Wolfson, C. Dlugy, Y. Shotland, D. Tavor, Glycerol as solvent and hydrogen donor in transfer hydrogenation – dehydrogenation reactions, Tetrahedron Lett. 50 (2009) 5951–5953. https://doi.org/10.1016/j.tetlet.2009.08.035
[33] A.E. Díaz-álvarez, P. Crochet, V. Cadierno, Ruthenium-catalyzed reduction of allylic alcohols using glycerol as solvent and hydrogen donor, Catal. Commun. 13 (2011) 91-96. https://doi.org/10.1016/j.catcom.2011.07.006
[34] D. Tavor, I. Gefen, C. Dlugy, A. Wolfson, Transfer hydrogenations of nitrobenzene using glycerol as solvent and hydrogen donor, Synth. Commun. 41 (2011) 3409–3416. https://doi.org/10.1080/00397911.2010.518276
[35] A. Azua, J.A. Mata, E. Peris, Iridium NHC based catalysts for transfer hydrogenation processes using glycerol as solvent and hydrogen donor, Organometellics 30 (2011) 5532–5536. https://doi.org/10.1021/om200796c
[36] A. Azua, J.A. Mata, E. Peris, F. Lamaty, J. Martinez, E. Colacino, Alternative energy input for transfer hydrogenation using iridium NHC based catalysts in glycerol as hydrogen donor and solvent, Organometallics 31 (2012) 3911–3919. https://doi.org/10.1021/om300109e
[37] A. Wolfson, A. Snezhko, T. Meyouhas, D. Tavor, Glycerol derivatives as green reaction mediums, Green Chem. Lett. Rev. 5 (2012) 7–12. https://doi.org/10.1080/17518253.2011.572298
[38] J.I. Garcia, H. Garcia-Marin, J.I. Mayoral, P. Perez, Green solvents from glycerol. Synthesis and physico-chemical properties of alkyl glycerol ethers, Green Chem. 12 (2010) 426–434. https://doi.org/10.1039/b923631g
[39] H. Garcia-Marin, J.C. va der Toorn, J.A. Mayoral, J.I. Gracia, I. Arends, Epoxidation of cyclooctene and cyclohexene with hydrogen peroxide catalyzed by bis[3,5-bis(trifluoromethyl)-diphenyl] diselenide: Recyclable catalyst-containing phases through the use of glycerol-derived solvents, J. Mol. Catal. Chem. 334 (2011) 83-88. https://doi.org/10.1016/j.molcata.2010.10.027
[40] R. Carmona, E.P. Schevciw, J.L. Petrarca, E.P. Wendler, A.A. Dos Santos, Joint use of microwave and glycerol-zinc (II) acetate catalytic system in the synthesis of 2-pyridyl-2-oxazolines, Green Process Synth. 2 (2013) 35–42. https://doi.org/10.1515/gps-2012-0085
[41] G. Cravotto, L. Orio, E.C. Gaudino, K. Martina, D. Tavor, A. Wolfson, Efficient synthetic protocols in glycerol under heterogeneous catalysis, ChemSusChem, 4 (2011) 1130–1134. https://doi.org/10.1002/cssc.201100106
[42] J. Barluenga, C. Valdes, Tosylhydrazones: New uses for classic reagents in palladium- catalyzed cross-coupling and metal-free reactions, Angew. Chem. Int. Ed. Engl. 50 (2011) 7486–7500. https://doi.org/10.1002/anie.201007961
[43] J. Aziz, G. Frison, M. Gomez, J. Brion, A. Hamze, Copper-catalyzed coupling of N Tosylhydrazones with amines: synthesis of fluorene derivatives, ACS Catalysis, 4 (2014) 3–8. https://doi.org/10.1021/cs5014877
[44] A. Hamel, M. Sacco, N. Mnasri, F. Lamaty, J. Martinez, F. De Angelis, E. Colacino, C. Charnay, Micelles into glycerol solvent: overcoming side reactions of glycerol, Sustain. Chem. Eng. 2 (2014) 1353–1358. https://doi.org/10.1021/sc500207r
[45] G.E. Dobereiner, R.H. Crabtree, Dehydrogenation as a substrate-activating strategy in homogeneous transition-metal catalysis, Chem. Rev. 110 (2010) 681–703. https://doi.org/10.1021/cr900202j
[46] A. Azua, J.A. Mata, E. Peris, Iridium NHC based catalysts for transfer hydrogenation processes using glycerol as solvent and hydrogen donor, Organomettalics. 30 (2011) 5532–5536. https://doi.org/10.1021/om200796c
[47] D.K.T. Yadav, S.S. Rajak, B.M. Bhanage, N-arylation of indoles with aryl halides using copper/glycerol as a mild and highly efficient recyclable catalytic system, Tetrahedron Lett. 55 (2014) 931–935. https://doi.org/10.1016/j.tetlet.2013.12.053
[48] V.G. Ricordi, C.S. Freitas, G. Perin, E.J. Lenardão, R.G. Jacob, L. Savegnago, D. Alves, Glycerol as a recyclable solvent for copper-catalyzed cross-coupling reactions of diaryl diselenides with aryl boronic acids, Green Chem. 14 (2012) 1030–1034. https://doi.org/10.1039/c2gc16427b
[49] K.D. Mesquita, B. Waskow, R.F. Schumacher, G. Perin, R.G. Jacob, D. Alves, Glycerol/hypophosphorous acid and PhSeSePh: An efficient and selective system for reactions in the carbon-carbon double bond of E-Chalcones, J. Braz. Chem. Soc. 25 (2014) 1261–1269. https://doi.org/10.5935/0103-5053.20140104
[50] J.M. Bhojane, S.A. Sarode, J.M. Nagarkar, Nickel–glycerol: an efficient, recyclable catalysis system for Suzuki cross coupling reactions using aryl diazonium salts, New J. Chem. 40 (2016) 1564–1570. https://doi.org/10.1002/chin.201625091
[51] F. Chahdoura, I. Favier, C. Pradel, S. Mallet-ladeira, M. Gomez, Palladium nanoparticles stabilised by PTA derivatives in glycerol : Synthesis and catalysis in a green wet phase, Catal. Commun. 63 (2015) 47–51. https://doi.org/10.1016/j.catcom.2014.10.004
[52] P.J. Gonzalez-Liste, V. Cadireno, S.E. Garcia-Garrido, Catalytic rearrangement of aldoximes to primary amides in environmentally friendly media under thermal and microwave heating: another application of the Bis(allyl)-Ruthenium(IV) Dimer [{RuCl(μ-Cl)(η3:η3-C10H16)}2], Sustain. Chem. Eng. 3 (2015) 3004–3011. https://doi.org/10.1021/acssuschemeng.5b01107
[53] C. Liu, G. Wang, W. Sui, L. An, C. Si, Preparation and characterization of chitosan by a novel deacetylation approach using glycerol as green reaction solvent, Sustain. Chem. Eng. 5 (2017) 4690–4698. https://doi.org/10.1021/acssuschemeng.7b00050