Green Chromatographic Purification of Pharmaceuticals

$20.00

Green Chromatographic Purification of Pharmaceuticals

R.N. El-Shaheny, M.H. El-Maghrabey, M.I. Eid, N.M. El-Enany

Purification of active pharmaceutical ingredients is a crucial step in pharmaceutical manufacturing. The elimination of by-products, impurities, catalysts, coloring agents, and residual solvents is critical for the production of high-quality pharmaceutical products. This step is traditionally time-consuming, expensive, and consumes plentiful toxic organic solvents. With the global concern about green chemistry and sustainability, it becomes mandatory for the pharmaceutical industry to depend on greener purification techniques. This chapter highlights the green chromatographic techniques for purification of pharmaceuticals including counter-current chromatography, high-performance thin layer chromatography, gas chromatography, and supercritical fluid chromatography. As well, the most up-to-date applications of these green chromatographic purification techniques are included.

Keywords
Supercritical Fluid Chromatography, Gas Chromatography, Countercurrent Chromatography, Thin Layer Chromatography, Green Purification, Pharmaceuticals

Published online 8/20/2019, 34 pages

Citation: R.N. El-Shaheny, M.H. El-Maghrabey, M.I. Eid, N.M. El-Enany, Green Chromatographic Purification of Pharmaceuticals, Materials Research Foundations, Vol. 54, pp 148-181, 2019

DOI: https://doi.org/10.21741/9781644900314-7

Part of the book on Industrial Applications of Green Solvents

References
[1] K. Galyan, J. Reill, Green chemistry approaches for the purification of pharmaceuticals, Current Opinion in Green and Sustainable Chemistry 11 (2018) 76-80. https://doi.org/10.1016/j.cogsc.2018.04.018
[2] B.W. Cuea, J.Zhang, Green process chemistry in the pharmaceutical industry, Green Chem. Lett. Rev. 2(2009) 193-211.
[3] A. Altemimi, N. Lakhssassi, A. Baharlouei, D. G. Watson, D. A. Lightfoot, Phytochemicals: extraction, isolation, and identification of bioactive compounds from plant extracts, Plants 6 (2017) 42-66. https://doi.org/10.3390/plants6040042
[4] Y.M. Koo, P. Srinophakun, Bioprocess beyond the large scale production, Biotechnol. J. 10 (2015) 1833-1834. https://doi.org/10.1002/biot.201500618
[5] C.J. Welch, N. Wu, M. Biba, R. Hartman, T. Brkovic, X. Gong, R. Helmy, W. Schafer, J. Cuff, Z. Pirzada, L. Zhou, Greening analytical chromatography, Trends Anal. Chem. 29 (2010) 667-680. https://doi.org/10.1016/j.trac.2010.03.008
[6] A. Berthod, Counter current chromatography: the support-free liquid stationary phase, Elsevier, Amsterdam, 2002.
[7] W.D. Conway, Counter-current chromatography: Simple process and confusing terminology, J. Chrom. 1218 (2011) 6015–6023. https://doi.org/10.1016/j.chroma.2011.03.056
[8] D.J. Keay, L. Janaway, High performance countercurrent chromatography (HPCCC) finally allows the advantages of liquid/liquid chromatography to be used in mainstream purification in medicinal chemistry, Chromatography Today (2008) 32 34.
[9] C. DeAmicis, N.A. Edwards, M.B. Giles, G.H. Harris, P. Hewitson, L. Janaway, S. Ignatova, Comparison of preparative reversed phase liquid chromatography and counter current chromatography for the kilogram scale purification of crude spinetoram insecticide, J. Chrom. 1218 (2011) 6122–6127. https://doi.org/10.1016/j.chroma.2011.06.073
[10] J. Wu, C. Liu, Y. Lu. Preparative separation of phytosterol analogues from green alga Chlorella vulgaris using recycling counter-current chromatography, J. Sep. Sci. 40 (2017) 2326–2334. https://doi.org/10.1002/jssc.201601434
[11] The European registration, evaluation, authorization and restriction of chemical, http://ec.europa.eu/environment/chemicals/reach/reach_en.htm, 2018 (accessed 25 February 2019).
[12] W. Chen, S. Li, L. Chen, M. Fang, Q. Chen, Z. Wu, Y. Wu, Y. Qiu, Online polar two phase countercurrent chromatography×high performance liquid chromatography for preparative isolation of polar polyphenols from tea extract in a single step, J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 997 (2015) 179–186. https://doi.org/10.1016/j.jchromb.2015.06.011
[13] M.J. Ruiz-Angel, V. Pino, S. Carda-Broch, A. Berthod, Solvent systems for countercurrent chromatography: An aqueous two phase liquid system based on a room temperature ionic liquid, J. Chrom. 1151 (2007) 65–73. https://doi.org/10.1016/j.chroma.2006.11.072
[14] V. Lange, L. Brown, P. Angel, Hydrodynamics studies of the behaviour of traditional and two-phase ionic liquid solvent systems in countercurrent chromatography (CCC), Chem. Eng. Sci. 192 (2018) 551-564. https://doi.org/10.1016/j.ces.2018.07.049
[15] N. Wu, H. Xie, Y. Fang, Y. Liu, X. Xi, Q. Chu, G. Dong, T. Lan, Y. Wei, Isolation and purification of alkaloids from lotus leaves by ionic-liquid-modified high-speed countercurrent chromatography, J. Sep. Sci. 41 (2018) 571-577. https://doi.org/10.1002/jssc.201700851
[16] J. Peng, X. Han, Y. Xu, Y. Qi, L. Xu, Q. Xu, New approach for application of high speed countercurrent chromatography coupled with direct injection of the powders of a raw material without any preparation, for isolation and separation of four alkaloids with high recoveries from Coptis chinensis Franch, J. Liq. Chrom. Relat. Tech. 30 (2007) 2929–2940. https://doi.org/10.1080/10826070701588984
[17] J. Li, X. Zhang, Q. Yu, X. Fu, W. Wang, One-step separation of four flavonoids from Herba Salviae Plbeiae by HSCCC, J. Chromatogr. Sci. 52 (2014) 1288–1293. https://doi.org/10.1093/chromsci/bmu007
[18] M. Zhang, S. Ignatova, P. Hu, Q. Liang, Y. Wang, G. Luo, F. Wu Jun, I. Sutherland, Development of a strategy and process parameters for a green process in counter-current chromatography: Purification of tanshinone IIA and cryptotanshinone from Salvia miltiorrhiza Bunge as a case study, J. Chrom. 1218 (2011) 6031–6037. https://doi.org/10.1016/j.chroma.2010.12.118
[19] E. Delannay, A. Toribio, L. Boudesocque, J-M. Nuzillard, M. Zèches-Hanrot, E. Dardennes, G. Le Dour, J. Sapi, J-H. Renault, Multiple dual-mode centrifugal partition chromatography, a semi-continuous development mode for routine laboratory-scale purifications, J. Chrom. 1127 (2006) 45–51. https://doi.org/10.1016/j.chroma.2006.05.069
[20] J. Bradow, F. Riley, L. Philippe, Q. Yan, B. Schuff, G. H. Harris, Automated solvent system screening for the preparative countercurrent chromatography of pharmaceutical discovery compounds, J. Sep. Sci. 38 (2015) 3983–3991. https://doi.org/10.1002/jssc.201500574
[21] T. Michel, E. Destandau, C. Elfakir, New advances in countercurrent chromatography and centrifugal partition chromatography: focus on coupling strategy, Anal. Bioanal. Chem. 406 (2014) 957-969. https://doi.org/10.1007/s00216-013-7017-8
[22] T. Kowalska, K. Kaczmarski, W. Prus, Theory and mechanism of thin-layer chromatography, in: J. Sherma, B. Fried (Eds.), Handbook of Thin-Layer Chromatography, third ed., Marcel Dekker, New York, 2003, pp. 62-105. https://doi.org/10.1201/9780203912430.ch2
[23] J.M. Miller, Chromatography: Concepts and contrasts, Wiley, New York, 2005.
[24] A. Vailaya, Fundamentals of reversed phase chromatography: thermodynamic and exothermodynamic treatment, J. Liq. Chrom. Relat. Tech. 28 (2005) 965–1054. https://doi.org/10.1081/jlc-200052969
[25] J.E. Clark, S.V. Olesik, Technique for ultrathin layer chromatography using an electrospun, nanofibrous stationary phase, Anal. Chem. 81 (2009) 4121–4129. https://doi.org/10.1021/ac9004293
[26] D. Milojković-Opsenica, F. Andrić, High performance thin-layer chromatography, In: A. Mohammad, Inamuddin (Eds.), Green chromatographic techniques. Separation and purification of organic and inorganic analytes, Springer, London, 2014, pp. 81-101. https://doi.org/10.1007/978-94-007-7735-4_4
[27] M. Gabriëls, J. Plaizier-Vercammen, Development of a reversed-phase thin-layer chromatographic method for artemisinin and its derivatives, J. Chromatogr. Sci. 42 (2004) 341-347. https://doi.org/10.1093/chromsci/42.7.341
[28] I. Molnár, Validation of robust chromatography methods using computer-assisted method development for quality control, LC GC Int. 9 (1996) 800–806.
[29] P. Jandera, Stationary phases for hydrophilic interaction chromatography, their characterization and implementation into multidimensional chromatography concepts, J. Sep. Sci. 31 (2008) 1421–1437. https://doi.org/10.1002/jssc.200800051
[30] B. Zheng, Y. Liu, D. Li, Y. Chai, F. Lu, J. Xu, Hydrophobic-hydrophilic monolithic dual-phase layer for two-dimensional thin-layer chromatography coupled with surface-enhanced Raman spectroscopy detection, J. Sep. Sci. 38 (2015) 2737–2745. https://doi.org/10.1002/jssc.201500243
[31] A.W. Sobańska, K. Kałębasiak, J.B. Pyzowski, E. Brzezińska, Quantification of sunscreen benzophenone-4 in hair shampoos by hydrophilic interactions thin-layer chromatography/densitometry or derivative UV spectrophotometry, J. Anal. Meth. Chem. 2015, http://dx.doi.org/10.1155/2015/695658
[32] A.M.I. Mohamed, F.A. Mohamed, S.A. Ahmed, A.S. Aboraiab, Y.A.S. Mohamed, Salting-out thin-layer chromatography and computational analysis of some oral hypoglycemic drugs, Biomed. Chromatogr. 28(2014) 1156–1162. https://doi.org/10.1002/bmc.3141
[33] Y.A.S. Mohamed, A.M. I. Mohamed, F.A. Mohamed, S.A. Ahmed, New salting out stability-indicating and kinetic thin layer chromatographic method for determination of glimepiride and metformin HCl binary mixture, J. Chromatogr. Sci. 53(2015) 1603–1610. https://doi.org/10.1093/chromsci/bmv057
[34] K. Ciura, J. Nowakowska, K. Rudnicka-Litka, P. Kawczak, T. Bączek, M.J. Markuszewski, The study of salting-out thin-layer chromatography and their application on QSRR/QSAR of some macrolide antibiotics, Monatshefte Chemie, 147 (2016)301–310. https://doi.org/10.1007/s00706-015-1606-5
[35] M. Koel, M. Kaljurand, Green analytical chemistry, RSC Publishing, Cambridge, 2010.
[36] W. Wardencki, J. Namieśik, Solventless sample preparation techniques in environmental analysis, J. Separ. Sci. 23 (2000) 297–303.
[37] A. Tipler, An introduction to headspace sampling in gas chromatography fundamentals and theory, Perkin Elmer, MA, USA. http://www.perkinelmer.co.uk/PDFs/downloads/GDE_Intro_to_Headspace.pdf, 2013 (accessed 26 October 2018).
[38] S. Banfi, M. Bergna, M. Povolo, G. Contarini, Programmable temperature vaporizer (PTV) applied to the triglyceride analysis of milk fat, J. Separ. Sci. 22 (1999) 93-96. https://doi.org/10.1002/(sici)1521-4168(19990201)22:2<93::aid-jhrc93>3.0.co;2-b
[39] O. Nacham, T.D. Ho, J.L. Anderson, G.K. Webster, Use of ionic liquids as headspace gas chromatography diluents for the analysis of residual solvents in pharmaceuticals, J. Pharm. Biomed. Anal. 145 (2017) 879-886. https://doi.org/10.1016/j.jpba.2017.05.033
[40] D. Han, K.H. Row, Recent applications of ionic liquids in separation technology, Molecules 15 (2010) 2405-2426. https://doi.org/10.3390/molecules15042405
[41] S. Mallakpour, M. Dinari, Ionic liquids as green solvents: progress and prospects, in: A. Mohammad, Inamuddin (Eds.), Green solvents II. Properties and applications of ionic liquids, Springer, Dordrecht, 2012, pp. 1-32. https://doi.org/10.1007/978-94-007-2891-2_1
[42] C.J. Poronsky, J.Q. Cutrone, Chromatoprobe as a sample-sparing technique for residual solvent analysis of drug discovery candidates by gas chromatography, J. Pharm. Anal. 7(2017) 265–269. https://doi.org/10.1016/j.jpha.2017.03.009
[43] M. Czaplicka, K. Klejnowski, Determination of volatile organic compounds in ambient air, J. Chrom. 976 (2002) 369–376. https://doi.org/10.1016/s0021-9673(02)00938-x
[44] P. Tsysik, J. Czech, R. Carleer, Thermal extraction coupled with gas chromatography-mass spectrometry as a tool for analyzing dioxin surrogates and precursors in fly ash, J. Chrom. 1210 (2008) 212–221. https://doi.org/10.1016/j.chroma.2008.09.071
[45] E. Duemichen, U. Braun, Analyzing the thermal- and thermo-oxidative degradation of polymers by a combination of thermal solid-phase extraction and thermal desorption (TED-GC-MS), J. Chrom. Separ. Tech. 6 (2015) 73.
[46] J. Engelberth, E.A. Schmelz, H.T. Alborn, Y.J. Cardoza, J. Huang, J.H. Tumlinson, Simultaneous quantification of jasmonic acid and salicylic acid in plants by vapor-phase extraction and gas chromatography-chemical ionization-mass spectrometry, Anal. Biochem. 312 (2003) 242-250. https://doi.org/10.1016/s0003-2697(02)00466-9
[47] T. Barri, J. Jönsson, Advances and developments in membrane extraction for gas chromatography: Techniques and applications, J. Chrom. 1186 (2008) 16-38. https://doi.org/10.1016/j.chroma.2008.02.002
[48] I. Al-Zahrani, M.H.A. Mohammed, C. Basheer, M.N. Siddiqui, A. Al-Arfaj, Membrane assisted simultaneous extraction and derivatization with triphenylphosphine of elemental sulfur in arabian crude samples by gas chromatography/mass spectrometry, Journal of Chemistry, 2015, https://doi.org/10.1155/2015/792914
[49] M. de Almeida Bezerra, M. Aurélio, Z.Arruda, S.L.C. Ferreira, Cloud point extraction as a procedure of separation and pre‐concentration for metal determination using spectroanalytical techniques: A review, Appl. Spectros. Rev. 40 (2005) 269-299. https://doi.org/10.1080/05704920500230880
[50] S.P.M. Ventura, F.A. Silva, M.V. Quental, D. Mondal, M.G. Freire, J.A.P. Coutinho, Ionic-liquid-mediated extraction and separation processes for bioactive compounds: past, present, and future trends, Chem. Rev. 117 (2017) 6984–7052. https://doi.org/10.1021/acs.chemrev.6b00550
[51] N.L. Bochkareva, I.N. Glazkov, I.A. Revelsk, Combination of supercritical fluid extraction and gas chromatography–mass spectrometry: determination of impurities extracted from tablet preparations of the benzodiazepine series, J. Anal. Chem. 61 (2006) 1082–1089. https://doi.org/10.1134/s1061934806110074
[52] Y. Pan, X. Yi, X. Deng, S. Zhao, S. Chen, H. Yang, L. Han, J. Zhu, Determination of multi-pesticides in black tea by subcritical water extraction and gas chromatography-tandem mass spectrometry, Se Pu. 30 (2012) 1159-1165. https://doi.org/10.3724/sp.j.1123.2012.06033
[53] M.N. Islam, Y-T. Jo, S-K. Jung, J-H. Park, Evaluation of subcritical water extraction process for remediation of pesticide-contaminated soil, Water Air Soil Pollut. 224 (2013) 1652-1662. https://doi.org/10.1007/s11270-013-1652-8
[54] J.I. Cacho, N. Campillo, P. Viñas, M. Hernández-Córdoba, Cloud point extraction and gas chromatography with direct microvial insert thermal desorption for the determination of haloanisoles in alcoholic beverages, Talanta 160 (2016) 282-288. https://doi.org/10.1016/j.talanta.2016.07.029
[55] P. Tatke, Y. Jaiswal, An overview of microwave assisted extraction and its applications in herbal drug research, Res. J. Med. Plants 5 (2011) 21-31. https://doi.org/10.3923/rjmp.2011.21.31
[56] F. Chemat, N. Rombaut, A-G. Sicaire, A. Meullemiestre, A-S. Fabiano-Tixier, M. Abert-Vian, Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review, Ultrason. Sonochem. 34 (2017) 540-560. https://doi.org/10.1016/j.ultsonch.2016.06.035
[57] A. Mustafa, C. Turner, Pressurized liquid extraction as a green approach in food and herbal plants extraction: A review, Anal. Chim. Acta. 703 (2011) 8-18. https://doi.org/10.1016/j.aca.2011.07.018
[56] M. Rahman, A.M. Abd El-Aty, J-H. Choi, H-C. Shin, S.C. Shin, J-H. Shim, Basic overview on gas chromatography columns, in: J.L. Anderson, A. Berthod, V. Pino, A. Stalcup (Eds.), Analytical separation science, Wiley‐VCH Verlag, Germany, 2015, pp. 823-834. https://doi.org/10.1002/9783527678129.assep024
[59] R.J. Bartram, P. Froehlich, Considerations on switching from Helium to Hydrogen, http://www.chromatographyonline.com/considerations-switching-helium-hydrogen, 2010. (accessed 25 February 2019).
[60] Y-P. Lin, Y-L. Lee, C-Y. Hung, C-F. Chang, Y. Chen, Resources, Supervision, validation detection of adulterated drugs in traditional Chinese medicine and dietary supplements using hydrogen as a carrier gas, PLoS One. 13 (2018), https://doi.org/10.1371/journal.pone.0205371
[61] P. Benedetti, E. Guerriero, S. Mosca, M. Rotatori, Analysis of polychlorodibenzo-p-dioxins and polychlorodibenzofurans in stationary source emissions in GC-MS/MS using hydrogen as the carrier gas, J. Sep. Sci. 40 (2017) 3469-3478. https://doi.org/10.1002/jssc.201700026
[62] U. Jumhawan, T. Bamba, Supercritical fluid chromatography, in: F. Pena-Pereira, M. Tobiszewski (Eds.), The application of green solvents in separation processes, Elsevier Inc., The Netherland, 2017, pp. 483–516. https://doi.org/10.1016/b978-0-12-805297-6.00016-4
[63] M. Alkio, Purification of pharmaceuticals and nutraceutical compounds by sub and supercritical chromatography and extraction, Julkaisija-Utgivare–Publisher, Finland, 2008.
[64] M. Ashraf-Khorassani, L.T. Taylor, K.C. Waterman, P. Narayan, D.R. Brannegan, G.L. Reid, Purification of pharmaceutical excipients with supercritical fluid extraction, Pharm. Develop. Technol. 10 (2005) 507–516. https://doi.org/10.1080/10837450500299958
[65] D. Speybrouck, E. Lipka, Preparative supercritical fluid chromatography: A powerful tool for chiral separations, J. Chrom. 1467 (2016) 33–55. https://doi.org/10.1016/j.chroma.2016.07.050
[66] Enantiomeric purification utilizing supercritical fluid chromatography (SFC). Purification of flavanone using alcyon SFC CSP Amylose-C, YMC Co., Ltd, Japan. http://www.ymc.co.jp/data/tech/208.pdf. (accessed 5 November 2018).
[67] L.Nie, Z. Dai, S. Ma, Improved chiral separation of (R,S)-goitrin by SFC: An application in traditional Chinese medicine, J. Anal. Methods Chem.2016, http://dx.doi.org/10.1155/2016/5782942
[68] The United States Pharmacopeia, thirty fourth ed., The United States Pharmacopeial Convention, NF 29, Rockville, MD, 2011.
[69] The British Pharmacopoeia, British Pharmacopoeial Commission, Her Majesty Stationery Office, London, 2013.
[70] The European Pharmacopoeia, ninth ed., The European Pharmacopoeia Commission, Strasbourg, 2017.
[71] The Pharmacopoeia of the People’s Republic of China, tenth ed., Chinese Pharmacopoeial Commission, Beijing, 2015.
[72] D.M. Casali, M.J. Yost, M.A. Matthews, Eliminating glutaraldehyde from crosslinked collagen films using supercritical CO2, J. Biomed. Mat. Res.106 (2018) 86-94. https://doi.org/10.1002/jbm.a.36209
[73] J. Howell, F. Niu, S.E. McCabe, W. Zhou, C.J. Decedue, Solvent removal and spore inactivation directly in dispensing vials with supercritical carbon dioxide and sterilant, AAPS Pharm. Sci. Tech. 13 (2012) 582–589. https://doi.org/10.1208/s12249-012-9777-4
[74] L. Bhardwaj, P.K. Sharma, S. Visht, V.K. Garg, N. Kumar, A review on methodology and application of supercritical fluid technology in pharmaceutical industry, Der Pharmacia Sinica 1 (2010) 183-194.
[75] C. Pando, A. Cabanas, I.A. Cuadra, Preparation of pharmaceutical co-crystals through sustainable processes using supercritical carbon dioxide: a review, RSC Adv. 6 (2016) 71134-71150. https://doi.org/10.1039/c6ra10917a
[76] G. Dhanarajan, V. Rangarajan, P.R. Sridhar, R. Sen, Development and scale-up of an efficient and green process for HPLC purification of antimicrobial homologues of commercially important microbial lipopeptides, ACS Sustain. Chem. Eng. 4 (2016) 6638−6646. https://doi.org/10.1021/acssuschemeng.6b01498
[77] G. Nagy, T. Peng, D.E. K. Kabotso, M.V. Novotny, N.L.B. Pohl, Protocol for the purification of protected carbohydrates: toward coupling automated synthesis to alternate-pump recycling high-performance liquid chromatography, Chem. Commun. 52 (2016) 13253–13256. https://doi.org/10.1039/c6cc07584c
[78] L.S. Mollayi, S. Tamhidi, H. Hashempour, A. Ghassempour, Recycling preparative high performance liquid chromatography for the separation of curcumin from curcuminoids in Curcuma Longa, Acta Chromatogr. 27(2015) 387–398. https://doi.org/10.1556/achrom.27.2015.2.13
[79] Y. Shen, B. Chenb, T.A. van Beek, Alternative solvents can make preparative liquid chromatography greener, Green Chem.17 (2015) 4073-4081. https://doi.org/10.1039/c5gc00887e
[80] G. Jaffuel, L. Chappuis, D. Guillarme, T.C.J. Turlings, G. Glauser, Improved separation by at-column dilution in preparative hydrophilic interaction chromatography, J. Chrom. 1532 (2018) 136-143. https://doi.org/10.1016/j.chroma.2017.11.071