Ionic Liquids as Green Solvents for Lignocellulosic Biomass Utilization


Ionic Liquids as Green Solvents for Lignocellulosic Biomass Utilization

H. Mahmood, M. Sulaiman, M. Moniruzzaman

Recently, the use of lignocellulosic biomass as a renewable raw material resource to replace fossil fuel based materials/polymers for the production of green materials and energy has gained increased worldwide interest due to concepts of sustainability. However, structural heterogeneity and the presence of strong networks of inter- and intra-molecular interactions in lignocellulosic matrices remain critical challenges for efficient conversion of lignocellulosic biomass into various products. The main goal of this chapter is to present recent technological developments in which the advantages of ILs as processing solvents for lignocellulose for the production of a plethora of green composites, fuels, and chemicals have been gradually realized.

Lignocellulosic Biomass, Ionic Liquids, Biocomposites, Biofuels, Biomass Pretreatment

Published online 8/20/2019, 27 pages

Citation: H. Mahmood, M. Sulaiman, M. Moniruzzaman, Ionic Liquids as Green Solvents for Lignocellulosic Biomass Utilization, Materials Research Foundations, Vol. 54, pp 60-86, 2019


Part of the book on Industrial Applications of Green Solvents

[1] A. Brandt, J. Gräsvik, J.P. Hallett, T. Welton, Deconstruction of lignocellulosic biomass with ionic liquids, Green Chem. 15 (2013) 550-583.
[2] K. Dong, X. Liu, H. Dong, X. Zhang, S. Zhang, Multiscale studies on ionic liquids, Chem. Rev. 117 (2017) 6636-6695.
[3] M. Sivapragasam, M. Moniruzzaman, M. Goto, Recent advances in exploiting ionic liquids for biomolecules: Solubility, stability and applications, Biotechnol. J. 11 (2016) 1000-1013.
[4] M.S. Rajabi, M. Moniruzzaman, H. Mahmood, M. Sivapragasam, M.A. Bustam, Extraction of β-carotene from organic phase using ammonium based ionic liquids, J. Mol. Liq. 227 (2017) 15-20.
[5] K. Shah, R. Atkin, R. Stanger, T. Wall, B. Moghtaderi, Interactions between vitrinite and inertinite-rich coals and the ionic liquid–[bmim][Cl], Fuel, 119 (2014) 214-218.
[6] H. Mahmood, M. Moniruzzaman, S. Yusup, H.M. Akil, Particulate composites based on ionic liquid-treated oil palm fiber and thermoplastic starch adhesive, Clean Technol. Environ. Policy.18 (2016) 2217-2226.
[7] H. Mahmood, M. Moniruzzaman, S. Yusup, H.M. Akil, Ionic liquid pretreatment at high solids loading: A clean approach for fabrication of renewable resource based particulate composites, Polym. Compos. 39 (2016) 1994-2003.
[8] H. Mahmood, M.H.A. bin Ahmad Sayukhi, M. Moniruzzaman, S. Yusup, Synthesis of ionic liquid polymer incorporating activated carbon for carbon dioxide capture and separation, Adv. Mater. Res.1133 (2016) 566-570.
[9] M. Moniruzzaman, N. Kamiya, M. Goto, Ionic liquid based microemulsion with pharmaceutically accepted components: Formulation and potential applications, J. Colloid Interface Sci. 352 (2010) 136-142.
[10] M. Moniruzzaman, K. Nakashima, N. Kamiya, M. Goto, Recent advances of enzymatic reactions in ionic liquids, Biochem. Eng. J. 48 (2010) 295-314.
[11] J. Chen, X. Chen, M. Su, J. Ye, J. Hong, Z. Yang, Direct production of all-wood plastics by kneading in ionic liquids/DMSO, Chem. Eng. J. 279 (2015) 136-142.
[12] T. Fukushima, T. Aida, Ionic liquids for soft functional materials with carbon nanotubes, Eur. J. Chem. 13 (2007) 5048-5058.
[13] A.E. Visser, R.P. Swatloski, W.M. Reichert, R. Mayton, S. Sheff, A. Wierzbicki, J.H. Davis Jr, R.D. Rogers, Task-specific ionic liquids for the extraction of metal ions from aqueous solutions, Chem. Comm. 0 (2001) 135-136.
[14] A. Balducci, U. Bardi, S. Caporali, M. Mastragostino, F. Soavi, Ionic liquids for hybrid supercapacitors, Electrochem. Comm. 6 (2004) 566-570.
[15] A. Lewandowski, A. Świderska-Mocek, Ionic liquids as electrolytes for Li-ion batteries—an overview of electrochemical studies, J. Power Sources 194 (2009) 601-609.
[16] A. Bösmann, L. Datsevich, A. Jess, A. Lauter, C. Schmitz, P. Wasserscheid, Deep desulfurization of diesel fuel by extraction with ionic liquids, Chem. Comm. 23 (2001) 2494-2495.
[17] C. Ye, W. Liu, Y. Chen, L. Yu, Room-temperature ionic liquids: a novel versatile lubricant, Chem. Comm. 0 (2001) 2244-2245.
[18] H. Mahmood, M. Moniruzzaman, S. Yusup, T. Welton, Ionic liquids assisted processing of renewable resources for the fabrication of biodegradable composite materials, Green Chem. 19 (2017) 2051-2075.
[19] I. Šimkovic, What could be greener than composites made from polysaccharides, Carbohydr. Polym. 74 (2008) 759-762.
[20] H. Mahmood, N. Ramzan, A. Shakeel, M. Moniruzzaman, T. Iqbal, M. A. Kazmi, M. Sulaiman, Kinetic modeling and optimization of parameters for biomass pyrolysis: A comparison of different lignocellulosic biomass, Energy Sources: Part A. 41 (2018) 1690-1700.
[21] K.G. Satyanarayana, G.G. Arizaga, F. Wypych, Biodegradable composites based on lignocellulosic fibers -An overview, Prog. Polym. Sci. 34 (2009) 982-1021.
[22] H. Mahmood, M. Moniruzzaman, S. Yusup, N. Muhammad, T. Iqbal, H.M. Akil, Ionic liquids pretreatment for fabrication of agro-residue/thermoplastic starch based composites: A comparative study with other pretreatment technologies, J. Cleaner Prod. 161 (2017) 257-266.
[23] H. Mahmood, M. Moniruzzaman, S. Yusup, M.I. Khan, M.J. Khan, Kinetic modeling and optimization of biomass pyrolysis for bio-oil production, Energy Sources: Part A. 38 (2016) 2065-2071.
[24] M. Moniruzzaman, T. Ono, Separation and characterization of cellulose fibers from cypress wood treated with ionic liquid prior to laccase treatment, Bioresour. Technol. 127 (2013) 132-137.
[25] S. Righi, A. Morfino, P. Galletti, C. Samorì, A. Tugnoli, C. Stramigioli, Comparative cradle-to-gate life cycle assessments of cellulose dissolution with 1-butyl-3-methylimidazolium chloride and N-methyl-morpholine-N-oxide, Green Chem.13 (2011) 367-375.
[26] S. Behera, R. Arora, N. Nandhagopal, S. Kumar, Importance of chemical pretreatment for bioconversion of lignocellulosic biomass, Renewable Sustainable Energy Rev. 36 (2014) 91-106.
[27] H. Mahmood, M. Moniruzzaman, S. Yusup, H.M. Akil, Comparison of some biocomposite board properties fabricated from lignocellulosic biomass before and after Ionic liquid pretreatment, Chem. Eng. Trans. AIDIC 45 (2015) 709-714.
[28] J.R. Mihelcic, J.C. Crittenden, M.J. Small, D.R. Shonnard, D.R. Hokanson, Q. Zhang, H. Chen, S.A. Sorby, V.U. James, J.W. Sutherland, Sustainability science and engineering: The emergence of a new metadiscipline, Environ. Sci. Technol. 37 (2003) 5314-5324.
[29] H. Mahmood, M. Moniruzzaman, T. Iqbal, S. Yusup, Effect of ionic liquids pretreatment on thermal degradation kinetics of agro-industrial waste reinforced thermoplastic starch composites, J. Mol. Liq. 247 (2017) 164-170.
[30] P. Mäki-Arvela, I. Anugwom, P. Virtanen, R. Sjöholm, J.P. Mikkola, Dissolution of lignocellulosic materials and its constituents using ionic liquids, Ind. Crops Prod. Rev. 32 (2010) 175-201.
[31] H. Mahmood, M. Moniruzzaman, S. Yusup, H.M. Akil, Pretreatment of oil palm biomass with ionic liquids: a new approach for fabrication of green composite board, J.Cleaner Prod. 126 (2016) 677-685.
[32] J. Vitz, T. Erdmenger, C. Haensch, U.S. Schubert, Extended dissolution studies of cellulose in imidazolium based ionic liquids, Green Chem. 11 (2009) 417-424.
[33] Y. Fukaya, K. Hayashi, M. Wada, H. Ohno, Cellulose dissolution with polar ionic liquids under mild conditions: required factors for anions, Green Chem. 10 (2008) 44-46.
[34] Y. Zhao, X. Liu, J. Wang, S. Zhang, Effects of cationic structure on cellulose dissolution in ionic liquids: a molecular dynamics study, Chem. Phys. Chem. 13 (2012) 3126-3133.
[35] B. Lu, A. Xu, J. Wang, Cation does matter: how cationic structure affects the dissolution of cellulose in ionic liquids, Green Chem. 16 (2014) 1326-1335.
[36] A. Pinkert, K.N. Marsh, S. Pang, M.P. Staiger, Ionic liquids and their interaction with cellulose, Chem. Rev. 109 (2009) 6712-6728.
[37] H. Zhao, G.A. Baker, Z. Song, O. Olubajo, T. Crittle, D. Peters, Designing enzyme-compatible ionic liquids that can dissolve carbohydrates, Green Chem. 10 (2008) 696-705.
[38] H. Mahmood, M. Moniruzzaman, S. Yusup, H.M. Akil, Green composites from ionic liquid-assisted processing of sustainable resources: a brief overview, in: S. Handy progress and developments in ionic liquids, InTech Publications, (2017) pp. 281-303.
[39] Y. Fukaya, A. Sugimoto, H. Ohno, Superior solubility of polysaccharides in low viscosity, polar, and halogen-free 1, 3-dialkylimidazolium formates, Biomacromolecules, 7 (2006) 3295-3297.
[40] I. Kilpeläinen, H. Xie, A. King, M. Granstrom, S. Heikkinen, D.S. Argyropoulos, Dissolution of wood in ionic liquids, J. Agric. Food. Chem. 55 (2007) 9142-9148.
[41] X. Wang, H. Li, Y. Cao, Q. Tang, Cellulose extraction from wood chip in an ionic liquid 1-allyl-3-methylimidazolium chloride (AmimCl), Bioresour. Technol. 102 (2011) 7959-7965.
[42] F. Yang, L. Li, Q. Li, W. Tan, W. Liu, M. Xian, Enhancement of enzymatic in situ saccharification of cellulose in aqueous-ionic liquid media by ultrasonic intensification, Carbohydr. Polym. 81 (2010) 311-316.
[43] M. Moniruzzaman, T. Ono, M.A. Bustam, S. Yusup, Y. Uemura, Pretreatment of wood biomass with Ionic Liquids: A” green” approach to separate cellulose for use in oilfield Application, J. Appl. Sci. 15 (2015) 531-537.
[44] J.P. Mikkola, A. Kirilin, J.-C. Tuuf, A. Pranovich, B. Holmbom, L.M. Kustov, D.Y. Murzin, T. Salmi, Ultrasound enhancement of cellulose processing in ionic liquids: from dissolution towards functionalization, Green Chem. 9 (2007) 1229-1237.
[45] K.C. Badgujar, B.M. Bhanage, Factors governing dissolution process of lignocellulosic biomass in ionic liquid: Current status, overview and challenges, Bioresour. Technol. 178 (2015) 2-18.
[46] N. Sun, M. Rahman, Y. Qin, M.L. Maxim, H. Rodríguez, R.D. Rogers, Complete dissolution and partial delignification of wood in the ionic liquid 1-ethyl-3-methylimidazolium acetate, Green Chem. 11 (2009) 646-655.
[47] H. Wu, M. Mora‐Pale, J. Miao, T.V. Doherty, R.J. Linhardt, J.S. Dordick, Facile pretreatment of lignocellulosic biomass at high loadings in room temperature ionic liquids, Biotechnol. Bioeng. 108 (2011) 2865-2875.
[48] L.W. Yoon, T.N. Ang, G.C. Ngoh, A.S.M. Chua, Regression analysis on ionic liquid pretreatment of sugarcane bagasse and assessment of structural changes, Biomass Bioenergy. 36 (2012) 160-169.
[49] H.T. Tan, K.T. Lee, Understanding the impact of ionic liquid pretreatment on biomass and enzymatic hydrolysis, Chem. Eng. J. 183 (2012) 448-458.
[50] R.L. Quirino, T.F. Garrison, M.R. Kessler, Matrices from vegetable oils, cashew nut shell liquid, and other relevant systems for biocomposite applications, Green Chem. 16 (2014) 1700-1715.
[51] J. Zhang, Y. Wang, L. Zhang, R. Zhang, G. Liu, G. Cheng, Understanding changes in cellulose crystalline structure of lignocellulosic biomass during ionic liquid pretreatment by XRD, Bioresour. Technol. 151 (2014) 402-405.
[52] H. Zhang, J. Wu, J. Zhang, J. He, 1-Allyl-3-methylimidazolium chloride room temperature ionic liquid: A new and powerful nonderivatizing solvent for cellulose, Macromolecules, 38 (2005) 8272-8277.
[53] Z. Liu, H. Wang, Z. Li, X. Lu, X. Zhang, S. Zhang, K. Zhou, Characterization of the regenerated cellulose films in ionic liquids and rheological properties of the solutions, Mater. Chem. Phys. 128 (2011) 220-227.
[54] R. De Silva, K. Vongsanga, X. Wang, N. Byrne, Development of a novel regenerated cellulose composite material, Carbohydr. Polym. 121 (2015) 382-387.
[55] J.P. Chen, G.-Y. Chang, J.-K. Chen, Electrospun collagen/chitosan nanofibrous membrane as wound dressing, Colloids Surf., A: Colloids and Surfaces A 313 (2008) 183-188.
[56] H. Yoshimoto, Y. Shin, H. Terai, J. Vacanti, A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering, Biomater. Sci. 24 (2003) 2077-2082.
[57] L. Meli, J. Miao, J.S. Dordick, R.J. Linhardt, Electrospinning from room temperature ionic liquids for biopolymer fiber formation, Green Chem. 12 (2010) 1883-1892.
[58] M. Polaskova, R. Cermak, V. Verney, P. Ponizil, S. Commereuc, M.F.C. Gomes, A.A. Padua, P. Mokrejs, M. Machovsky, Preparation of microfibers from wood/ionic liquid solutions, Carbohydr. Polym. 92 (2013) 214-217.
[59] Y. Ahn, S.H. Lee, H.J. Kim, Y.-H. Yang, J.H. Hong, Y.-H. Kim, H. Kim, Electrospinning of lignocellulosic biomass using ionic liquid, Carbohydr. Polym. 88 (2012) 395-398.
[60] X. Shen, J.L. Shamshina, P. Berton, G. Gurau, R.D. Rogers, Hydrogels based on cellulose and chitin: Fabrication, properties, and applications, Green Chem. 18 (2016) 53-75.
[61] A.C. Pierre, G.M. Pajonk, Chemistry of aerogels and their applications, Chem. Rev. 102 (2002) 4243-4266.
[62] J.A. Kenar, F.J. Eller, F.C. Felker, M.A. Jackson, G.F. Fanta, Starch aerogel beads obtained from inclusion complexes prepared from high amylose starch and sodium palmitate, Green Chem. 16 (2014) 1921-1930.
[63] B. Balakrishnan, R. Banerjee, Biopolymer-based hydrogels for cartilage tissue engineering, Chem. Rev. 111 (2011) 4453-4474.
[64] C. García-González, M. Alnaief, I. Smirnova, Polysaccharide-based aerogels—Promising biodegradable carriers for drug delivery systems, Carbohydr. Polym. 86 (2011) 1425-1438.
[65] S. Van Vlierberghe, P. Dubruel, E. Schacht, Biopolymer-based hydrogels as scaffolds for tissue engineering applications: A review, Biomacromolecules, 12 (2011) 1387-1408.
[66] J. Li, Y. Lu, D. Yang, Q. Sun, Y. Liu, H. Zhao, Lignocellulose aerogel from wood-ionic liquid solution (1-allyl-3-methylimidazolium chloride) under freezing and thawing conditions, Biomacromolecules, 12 (2011) 1860-1867.
[67] R. Sescousse, R. Gavillon, T. Budtova, Aerocellulose from cellulose–ionic liquid solutions: Preparation, properties and comparison with cellulose–NaOH and cellulose–NMMO routes, Carbohydr. Polym. 83 (2011) 1766-1774.
[68] O. Aaltonen, O. Jauhiainen, The preparation of lignocellulosic aerogels from ionic liquid solutions, Carbohydr. Polym. 75 (2009) 125-129.
[69] J. Reina, E. Velo, L. Puigjaner, Kinetic study of the pyrolysis of waste wood, Ind. Eng. Chem. Res. 37 (1998) 4290-4295.
[70] J.A. Cooper, Environmental impact of residential wood combustion emissions and its implications, J. Air Pollut Control Assoc. 30 (1980) 855-861.
[71] D. Jochem, N. Janzen, H. Weimar, Estimation of own and cross price elasticities of demand for wood-based products and associated substitutes in the German construction sector, J. Cleaner Prod. 137 (2016) 1216-1227.
[72] M. Shibata, K. Yamazoe, M. Kuribayashi, Y. Okuyama, All‐wood biocomposites by partial dissolution of wood flour in 1‐butyl‐3‐methylimidazolium chloride, J. Appl. Polym. Sci. 127 (2013) 4802-4808.
[73] M. Shibata, N. Teramoto, T. Nakamura, Y. Saitoh, All-cellulose and all-wood composites by partial dissolution of cotton fabric and wood in ionic liquid, Carbohydr. Polym. 98 (2013) 1532-1539.
[74] M. Ho, H. Wang, J.-H. Lee, C.-k. Ho, K.-t. Lau, J. Leng, D. Hui, Critical factors on manufacturing processes of natural fibre composites, Composites Part B: Eng. 43 (2012) 3549-3562.
[75] S. Kalia, B. Kaith, I. Kaur, Pretreatments of natural fibers and their application as reinforcing material in polymer composites—A review, Polym. Eng. Sci. 49 (2009) 1253-1272.
[76] M. Moniruzzaman, H. Mahmood, M.F. Ibrahim, S. Yusup, Y. Uemura, Effects of pressure and temperature on the dissolution of cellulose in ionic liquids, Adv. Mater. Res.1133 (2016) 588-592.
[77] J. Wen, Y. Sun, L. Meng, T. Yuan, F. Xu, R.-C. Sun, Homogeneous lauroylation of ball-milled bamboo in ionic liquid for bio-based composites production: part I: Modification and characterization, Ind. Crops Prod. 34 (2011) 1491-1501.
[78] H. Xie, P. Jarvi, M. Karesoja, A. King, I. Kilpelainen, D.S. Argyropoulos, Highly compatible wood thermoplastic composites from lignocellulosic material modified in ionic liquids: Preparation and thermal properties, J. Appl. Polym. Sci. 111 (2009) 2468-2476.
[79] S. Patachia, C. Croitoru, C. Friedrich, Effect of UV exposure on the surface chemistry of wood veneers treated with ionic liquids, Appl. Surf. Sci. 258 (2012) 6723-6729.
[80] S. Chu, A. Majumdar, Opportunities and challenges for a sustainable energy future, Nature, 488 (2012) 294-303.
[81] C. Klessmann, A. Held, M. Rathmann, M. Ragwitz, Status and perspectives of renewable energy policy and deployment in the European Union—What is needed to reach the 2020 targets?, Energy policy. 39 (2011) 7637-7657.
[82] B. Li, J. Asikkala, I. Filpponen, D.S. Argyropoulos, Factors affecting wood dissolution and regeneration of ionic liquids, Ind. Eng. Chem. Res. 49 (2010) 2477-2484.
[83] L. Reina, E. Botto, C. Mantero, P. Moyna, P. Menéndez, Production of second generation ethanol using Eucalyptus dunnii bark residues and ionic liquid pretreatment, Biomass Bioenergy. 93 (2016) 116-121.
[84] M. Hashmi, Q. Sun, J. Tao, T. Wells Jr, A.A. Shah, N. Labbé, A.J. Ragauskas, Comparison of autohydrolysis and ionic liquid 1-butyl-3-methylimidazolium acetate pretreatment to enhance enzymatic hydrolysis of sugarcane bagasse, Bioresour. Technol. 224 (2017) 714-720.
[85] S.V. Farahani, Y.W. Kim, C.A. Schall, A coupled low temperature oxidative and ionic liquid pretreatment of lignocellulosic biomass, Catal. Today.269 (2016) 2-8.
[86] M. Moniruzzaman, T. Ono, Ionic liquid assisted enzymatic delignification of wood biomass: A new ‘green’ and efficient approach for isolating of cellulose fibers, Biochem. Eng. J. 60 (2012) 156-160.
[87] F. Cherubini, The biorefinery concept: using biomass instead of oil for producing energy and chemicals, Energy Convers. Manage. 51 (2010) 1412-1421.
[88] P. Gallezot, Conversion of biomass to selected chemical products, Chem. Soc. Rev. 41 (2012) 1538-1558.
[89] C. Chang, P. Cen, X. Ma, Levulinic acid production from wheat straw, Bioresour. Technol. 98 (2007) 1448-1453.
[90] J. Cha, M. Hanna, Levulinic acid production based on extrusion and pressurized batch reaction, Ind. Crops Prod. 16 (2002) 109-118.
[91] F.S. Asghari, H. Yoshida, Kinetics of the decomposition of fructose catalyzed by hydrochloric acid in subcritical water: formation of 5-hydroxymethylfurfural, levulinic and formic acids, Ind. Eng. Chem. Chem. Eng. 46 (2007) 7703-7710.
[92] V. Choudhary, S.H. Mushrif, C. Ho, A. Anderko, V. Nikolakis, N.S. Marinkovic, A.I. Frenkel, S.I. Sandler, D.G. Vlachos, Insights into the interplay of Lewis and Brønsted acid catalysts in glucose and fructose conversion to 5-(hydroxymethyl) furfural and levulinic acid in aqueous media, J. Am. Chem. Soc.135 (2013) 3997-4006.
[93] S. Van de Vyver, J. Thomas, J. Geboers, S. Keyzer, M. Smet, W. Dehaen, P.A. Jacobs, B.F. Sels, Catalytic production of levulinic acid from cellulose and other biomass-derived carbohydrates with sulfonated hyperbranched poly (arylene oxindole)s, Energy Environ. Sci. 4 (2011) 3601-3610.
[94] D.J. Hayes, S. Fitzpatrick, M.H. Hayes, J.R. Ross, The biofine process–production of levulinic acid, furfural, and formic acid from lignocellulosic feedstocks, Biorefin.Ind. Pro. Prod. 1 (2006) 139-164.
[95] H. Ren, Y. Zhou, L. Liu, Selective conversion of cellulose to levulinic acid via microwave-assisted synthesis in ionic liquids, Bioresour. Technol. 129 (2013) 616-619.
[96] L. Liu, Z. Li, W. Hou, H. Shen, Direct conversion of lignocellulose to levulinic acid catalyzed by ionic liquid, Carbohydr. Polym. 181 (2018) 778-784.
[97] A.S. Khan, Z. Man, M.A. Bustam, A. Nasrullah, Z. Ullah, A. Sarwono, F.U. Shah, N. Muhammad, Efficient conversion of lignocellulosic biomass to levulinic acid using acidic ionic liquids, Carbohydr. Polym. 181 (2018) 208-214.
[98] T. Werpy, G. Petersen, A. Aden, J. Bozell, J. Holladay, J. White, A. Manheim, D. Eliot, L. Lasure, S. Jones, Top value added chemicals from biomass. Volume 1-Results of screening for potential candidates from sugars and synthesis gas, Department of Energy Washington DC, 2004.
[99] M. Bicker, D. Kaiser, L. Ott, H. Vogel, Dehydration of D-fructose to hydroxymethylfurfural in sub-and supercritical fluids, J. Supercrit. Fluids. 36 (2005) 118-126.
[100] S. Peleteiro, S. Rivas, J.L. Alonso, V. Santos, J.C. Parajó, Furfural production using ionic liquids: A review, Bioresour. Technol. 202 (2016) 181-191.
[101] P. Wang, H. Yu, S. Zhan, S. Wang, Catalytic hydrolysis of lignocellulosic biomass into 5-hydroxymethylfurfural in ionic liquid, Bioresour. Technol. 102 (2011) 4179-4183.
[102] Z. Zhang, Z.K. Zhao, Microwave-assisted conversion of lignocellulosic biomass into furans in ionic liquid, Bioresour. Technol. 101 (2010) 1111-1114.
[103] A. Sarwono, Z. Man, N. Muhammad, A.S. Khan, W.S.W. Hamzah, A.H.A. Rahim, Z. Ullah, C.D. Wilfred, A new approach of probe sonication assisted ionic liquid conversion of glucose, cellulose and biomass into 5-hydroxymethylfurfural, Ultrason. Sonochem. 37 (2017) 310-319.