Applications of Ionic Liquids in Sensors and Biosensors

$20.00

Applications of Ionic Liquids in Sensors and Biosensors

Amina Saleem, Nawshad Muhammad, Zahoor Ullah, Amir Sada Khan, Abdur Rahim

Herein in this chapter are discussed the uses of ionic liquids (ILs) in the sensing and biosensing applications. ILs are molten salts in which ions are poorly shared; owing to this property they are liquid below 100 °C and till room temperature. Ionic liquids contain both cations and anions. ILs are versatile and green solvents with various applications in different fields of science. ILs can serve as both conductor and binder. Ionic liquids have been used in the fields of biosensing because of their inimitable properties. The common features of ILs noticable when used for sensing purposes include high conductivity, thermal stability, good catalytic ability, super sensitivity, long linearity, and better selectivity. ILs have been applied in different types of sensors and biosensors i.e. electrochemical, optical, fluorescent, and thermometric sensor, etc.

Keywords
Ionic Liquids (ILs), Biosensors, Sensors, Electrochemical Sensors, Optical Sensors

Published online 8/20/2019, 22 pages

Citation: Amina Saleem, Nawshad Muhammad, Zahoor Ullah, Amir Sada Khan, Abdur Rahim, Applications of Ionic Liquids in Sensors and Biosensors, Materials Research Foundations, Vol. 54, pp 29-50, 2019

DOI: https://doi.org/10.21741/9781644900314-2

Part of the book on Industrial Applications of Green Solvents

References
[1] G. Zheng, F. Patolsky, Y. Cui, W.U. Wang, C.M. Lieber, Multiplexed electrical detection of cancer markers with nanowire sensor arrays, Nat. biotechnol. 23 (2005) 1294-1301. https://doi.org/10.1038/nbt1138
[2] D.R. Thevenot, K. Toth, R.A. Durst, G.S. Wilson, Electrochemical biosensors: Recommended definitions and classification, Pure Appl. Chem. 71 (1999) 2333-2348. https://doi.org/10.1351/pac199971122333
[3] F.G. Banica, Chemical sensors and biosensors: Fundamentals and applications, John Wiley & Sons 2012.
[4] J.G. Huddleston, A.E. Visser, W.M. Reichert, H.D. Willauer, G.A. Broker, R.D. Rogers, Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation, Green Chem. 3 (2001) 156-164. https://doi.org/10.1039/b103275p
[5] K.R. Seddon, Ionic liquids for clean technology, J. Chem. Technol. Biotechnol. 68 (1997) 351-356. https://doi.org/10.1002/(sici)1097-4660(199704)68:4<351::aid-jctb613>3.0.co;2-4
[6] J.L. Anderson, R. Ding, A. Ellern, D.W. Armstrong, Structure and properties of high stability geminal dicationic ionic liquids, J. Am. Chem. Soc. 127 (2005) 593-604. https://doi.org/10.1021/ja046521u
[7] J.S. Wilkes, Properties of ionic liquid solvents for catalysis, J. Mol. Catal. Chem. 214 (2004) 11-17.
[8] J.L. Anderson, D.W. Armstrong, G.T. Wei, Ionic liquids in analytical chemistry, Anal. Chem. 79 (2007) 4247-4247. https://doi.org/10.1021/ac070742b
[9] F. Faridbod, M.R. Ganjali, P. Norouzi, S. Riahi, H. Rashedi, Application of room temperature ionic liquids in electrochemical sensors and biosensors, in: Ionic liquids: Applications and perspectives, InTech 2011. https://doi.org/10.5772/14702
[10] A.P. Abbott, D. Boothby, G. Capper, D.L. Davies, R.K. Rasheed, Deep eutectic solvents formed between choline chloride and carboxylic acids: versatile alternatives to ionic liquids, J. Am. Chem. Soc. 126 (2004) 9142-9147. https://doi.org/10.1021/ja048266j
[11] C. Chiappe, D. Pieraccini, Ionic liquids: Solvent properties and organic reactivity, J. Phys. Org. Chem. 18 (2005) 275-297. https://doi.org/10.1002/poc.863
[12] C. Randriamampita, A.C. Lellouch, Imaging early signaling events in T lymphocytes with fluorescent biosensors, Biotechnol. J. 9 (2014) 203-212. https://doi.org/10.1002/biot.201300195
[13] J.M. Harris, C. Reyes, G.P. Lopez, Common causes of glucose oxidase instability in vivo biosensing: A brief review, J. Diabetes Sci. Technol. 7 (2013) 1030-1038. https://doi.org/10.1177/193229681300700428
[14] M. Nasir, M.H. Nawaz, U. Latif, M. Yaqub, A. Hayat, A. Rahim, An overview on enzyme-mimicking nanomaterials for use in electrochemical and optical assays, Microchim. Acta, 184 (2017) 323-342. https://doi.org/10.1007/s00604-016-2036-8
[15] S.U. Senveli, O. Tigli, Biosensors in the small scale: Methods and technology trends, IET Nanobiotechnol. 7 (2013) 7-21. https://doi.org/10.1049/iet-nbt.2012.0005
[16] F. Long, A. Zhu, H. Shi, Recent advances in optical biosensors for environmental monitoring and early warning, Sensors, 13 (2013) 13928-13948. https://doi.org/10.3390/s131013928
[17] L.R. Khot, S. Sankaran, J.M. Maja, R. Ehsani, E.W. Schuster, Applications of nanomaterials in agricultural production and crop protection: A review, Crop protect. 35 (2012) 64-70. https://doi.org/10.1016/j.cropro.2012.01.007
[18] J.A. Hansen, R. Mukhopadhyay, J.Ø. Hansen, K.V. Gothelf, Femtomolar electrochemical detection of DNA targets using metal sulfide nanoparticles, J. Am. Chem. Soc. 128 (2006) 3860-3861. https://doi.org/10.1021/ja0574116
[19] C. Li, H. Bai, G. Shi, Conducting polymer nanomaterials: Electrosynthesis and applications, Chem. Soc. Rev. 38 (2009) 2397-2409. https://doi.org/10.1039/b816681c
[20] L. Zhang, T. Dong, A Si/SiGe quantum well-based biosensor for direct analysis of exothermic biochemical reaction, J. Micromechanics Microengineering. 23 (2013) 045011-045011. https://doi.org/10.1088/0960-1317/23/4/045011
[21] J. Wang, Analytical electrochemistry, John Wiley & Sons 2006.
[22] M. Govindhan, B.R. Adhikari, A. Chen, Nanomaterials-based electrochemical detection of chemical contaminants, RSC Advance. 4 (2014) 63741-63760. https://doi.org/10.1039/c4ra10399h
[23] A. Ambrosi, C.K. Chua, A. Bonanni, M. Pumera, Electrochemistry of graphene and related materials, Chem. Rev. 114 (2014) 7150-7188. https://doi.org/10.1021/cr500023c
[24] D. Wu, D. Du, Y. Lin, Recent progress on nanomaterial-based biosensors for veterinary drug residues in animal-derived food, TrAC Trends Anal. Chem. 83 (2016) 95-101. https://doi.org/10.1016/j.trac.2016.08.006
[25] B. Pérez-López, A. Merkoçi, Nanomaterials based biosensors for food analysis applications, Trends Food Sci. Tech. 22 (2011) 625-639. https://doi.org/10.1016/j.tifs.2011.04.001
[26] A. Heller, B. Feldman, Electrochemical glucose sensors and their application in diabetes management, in: M. Schlesinger (Eds.) Applications of Electrochemistry in Medicine, (2013) 121-187. https://doi.org/10.1007/978-1-4614-6148-7_5
[27] C. Chen, Q. Xie, D. Yang, H. Xiao, Y. Fu, Y. Tan, S. Yao, Recent advances in electrochemical glucose biosensors: A review, RSC Adv. 3 (2013) 4473-4491. https://doi.org/10.1039/c2ra22351a
[28] A.P. Turner, B. Chen, S.A. Piletsky, In vitro diagnostics in diabetes: Meeting the challenge, Clin. Chem. 45 (1999) 1596-1601.
[29] A. Heller, Amperometric biosensors, Curr. Opin. Biotechnol. 7 (1996) 50-54.
[30] A. Rahim, S.B. Barros, L.T. Kubota, Y. Gushikem, SiO2/C/Cu (II) phthalocyanine as a biomimetic catalyst for dopamine monooxygenase in the development of an amperometric sensor, Electrochim. Acta, 56 (2011) 10116-10121. https://doi.org/10.1016/j.electacta.2011.08.111
[31] S.B. Barros, A. Rahim, A.A. Tanaka, L.T. Arenas, R. Landers, Y. Gushikem, In situ immobilization of nickel (II) phthalocyanine on mesoporous SiO2/C carbon ceramic matrices prepared by the sol-gel method: Use in the simultaneous voltammetric determination of ascorbic acid and dopamine, Electrochim. Acta, 87 (2013) 140-147. https://doi.org/10.1016/j.electacta.2012.09.012
[32] A. Rahim, S.B. Barros, L.T. Arenas, Y. Gushikem, In situ immobilization of cobalt phthalocyanine on the mesoporous carbon ceramic SiO2/C prepared by the sol-gel process. Evaluation as an electrochemical sensor for oxalic acid, Electrochim. Acta, 56 (2011) 1256-1261. https://doi.org/10.1016/j.electacta.2010.11.009
[33] A. Rahim, L.S. Santos, S.B. Barros, L.T. Kubota, R. Landers, Y. Gushikem, Electrochemical detection of nitrite in meat and water samples using a mesoporous carbon ceramic SiO2/C electrode modified with in situ generated manganese (II) phthalocyanine, Electroanalysis, 26 (2014) 541-547. https://doi.org/10.1002/elan.201300468
[34] A. Rahim, L.S. Santos, S.B. Barros, L.T. Kubota, Y. Gushikem, Dissolved O2 sensor based on cobalt (II) phthalocyanine immobilized in situ on electrically conducting carbon ceramic mesoporous SiO2/C material, Sensor Actuator B Chem. 177 (2013) 231-238. https://doi.org/10.1016/j.snb.2012.10.110
[35] A. Volkov, E. Gorbova, A. Vylkov, D. Medvedev, A. Demin, P. Tsiakaras, Design and applications of potentiometric sensors based on proton-conducting ceramic materials. A brief review, Sensor Actuator B Chem. 244 (2017) 1004-1015. https://doi.org/10.1016/j.snb.2017.01.097
[36] K. Ramanathan, B. Danielsson, Principles and applications of thermal biosensors, Biosens. Bioelectron.16 (2001) 417-423.
[37] K. Mosbach, B. Danielsson, An enzyme thermistor, Biochim. Biophys. Acta Enzymol. 364 (1974) 140-145.
[38] Y. Gu, P.Y. Tseng, X. Bi, J. Yang, Quantification of DNA by a thermal-durable biosensor modified with conductive poly (3, 4-ethylenedioxythiophene), Sensors, 18 (2018) 3684-3684. https://doi.org/10.3390/s18113684
[39] K. Betlem, M.P. Down, C.W. Foster, S. Akthar, K. Eersels, B. van Grinsven, T. Cleij, C. Banks, M. Peeters, Development of a flexible MIP-based biosensor platform for the thermal detection of neurotransmitters, MRS Advance. 3 (2018) 1569-1574. https://doi.org/10.1557/adv.2017.634
[40] Z. Wang, M. Kimura, T. Ono, Manufacturing and characterization of simple cantilever thermal biosensor with Si-Metal thermocouple structure for enzymatic reaction detection, Thermochim. Acta, 668 (2018) 110-115. https://doi.org/10.1016/j.tca.2018.08.020
[41] L. Zhou, Q. Shen, P. Zhao, B. Xiang, Z. Nie, Y. Huang, S. Yao, Fluorescent detection of copper (II) based on DNA-templated click chemistry and graphene oxide, Method. 64 (2013) 299-304. https://doi.org/10.1016/j.ymeth.2013.09.001
[42] L. Zhang, L. Li, Colorimetric thrombin assay using aptamer-functionalized gold nanoparticles acting as a peroxidase mimetic, Microchim. Acta, 183 (2016) 485-490. https://doi.org/10.1007/s00604-015-1674-6
[43] F. Zarif, S. Rauf, M.Z. Qureshi, N.S. Shah, A. Hayat, N. Muhammad, A. Rahim, M.H. Nawaz, M. Nasir, Ionic liquid coated iron nanoparticles are promising peroxidase mimics for optical determination of H2O2, Microchim. Acta, 185 (2018) 302-302. https://doi.org/10.1007/s00604-018-2841-3
[44] A. Niaz, A. Bibi, M.I. Zaman, M. Khan, A. Rahim, Highly selective and eco-friendly colorimetric method for the detection of iodide using green tea synthesized silver nanoparticles, J. Mol. Liq. 249 (2018) 1047-1051. https://doi.org/10.1016/j.molliq.2017.11.151
[45] M. Ratel, A. Provencher-Girard, S.S. Zhao, J. Breault-Turcot, J. Labrecque-Carbonneau, M. Branca, J.N. Pelletier, A.R. Schmitzer, J.F. Masson, Imidazolium-based ionic liquid surfaces for biosensing, Anal. Chem. 85 (2013) 5770-5777. https://doi.org/10.1021/ac400386z
[46] X. Li, K. Wang, N. Ma, X. Jia, Poly (ionic liquid) based chemosensors for detection of basic amino acids in aqueous medium, Front. Chem. 5 (2017) 69-69. https://doi.org/10.3389/fchem.2017.00069
[47] T. Tamura, I. Hamachi, Recent progress in design of protein-based fluorescent biosensors and their cellular applications, ACS Chem. Biol. 9 (2014) 2708-2717. https://doi.org/10.1021/cb500661v
[48] R.F. Elshaarawy, R. Ali, S.M. Saleh, C. Janiak, A novel water-soluble highly selective “switch-on” ionic liquid-based fluorescent chemi-sensor for Ca (II), J. Mol. Liq. 241 (2017) 308-315. https://doi.org/10.1016/j.molliq.2017.06.016
[49] S. Barua, S. Gogoi, R. Khan, Fluorescence biosensor based on gold-carbon dot probe for efficient detection of cholesterol, Synthetic Metal. 244 (2018) 92-98. https://doi.org/10.1016/j.synthmet.2018.07.010
[50] A. Noda, M.A.B.H. Susan, K. Kudo, S. Mitsushima, K. Hayamizu, M. Watanabe, Brønsted acid-base ionic liquids as proton-conducting nonaqueous electrolytes, J. Phys. Chem. B, 107 (2003) 4024-4033. https://doi.org/10.1021/jp022347p
[51] P.A. Suarez, V.M. Selbach, J.E. Dullius, S. Einloft, C.M. Piatnicki, D.S. Azambuja, R.F. de Souza, J. Dupont, Enlarged electrochemical window in dialkyl-imidazolium cation based room-temperature air and water-stable molten salts, Electrochim. Acta, 42 (1997) 2533-2535. https://doi.org/10.1016/s0013-4686(96)00444-6
[52] X. Lu, J. Hu, X. Yao, Z. Wang, J. Li, Composite system based on chitosan and room-temperature ionic liquid: direct electrochemistry and electrocatalysis of hemoglobin, Biomacromolecules, 7 (2006) 975-980. https://doi.org/10.1021/bm050933t
[53] X. Wang, J. Hao, Recent advances in ionic liquid-based electrochemical biosensors, Sci. Bull. 61 (2016) 1281-1295. https://doi.org/10.1007/s11434-016-1151-6
[54] X. Liu, Z. Nan, Y. Qiu, L. Zheng, X. Lu, Hydrophobic ionic liquid immobilizing cholesterol oxidase on the electrodeposited Prussian blue on glassy carbon electrode for detection of cholesterol, Electrochim. Acta, 90 (2013) 203-209. https://doi.org/10.1016/j.electacta.2012.11.119
[55] H. Chen, Y. Wang, Y. Liu, Y. Wang, L. Qi, S. Dong, Direct electrochemistry and electrocatalysis of horseradish peroxidase immobilized in Nafion-RTIL composite film, Electrochem. Comm. 9 (2007) 469-474. https://doi.org/10.1016/j.elecom.2006.10.019
[56] H. Ohno, Electrochemical aspects of ionic liquids, John Wiley & Sons 2005.
[57] M. Persson, U.T. Bornscheuer, Increased stability of an esterase from Bacillus stearothermophilus in ionic liquids as compared to organic solvents, J. Mol. Catal. Enzym. 22 (2003) 21-27. https://doi.org/10.1016/s1381-1177(02)00294-1
[58] S. Park, R.J. Kazlauskas, Biocatalysis in ionic liquids–advantages beyond green technology, Curr. Opin. Biotechnol. 14 (2003) 432-437. https://doi.org/10.1016/s0958-1669(03)00100-9
[59] P. Rahimi, H.A. Rafiee-Pour, H. Ghourchian, P. Norouzi, M.R. Ganjali, Ionic-liquid/NH2-MWCNTs as a highly sensitive nano-composite for catalase direct electrochemistry, Biosens. Bioelectron. 25 (2010) 1301-1306. https://doi.org/10.1016/j.bios.2009.10.020
[60] C.M. Maroneze, A. Rahim, N. Fattori, L.P. da Costa, F.A. Sigoli, I.O. Mazali, R. Custodio, Y. Gushikem, Electroactive properties of 1-propyl-3-methylimidazolium ionic liquid covalently bonded on mesoporous silica surface: development of an electrochemical sensor probed for NADH, dopamine and uric acid detection, Electrochim. Acta, 123 (2014) 435-440. https://doi.org/10.1016/j.electacta.2014.01.071
[61] M. Wei, J. Wang, A novel acetylcholinesterase biosensor based on ionic liquids-AuNPs-porous carbon composite matrix for detection of organophosphate pesticides, Sensor Actuator B Chem. 211 (2015) 290-296. https://doi.org/10.1016/j.snb.2015.01.112
[62] K. Rovina, S. Siddiquee, N.K. Wong, Development of melamine sensor based on ionic liquid/nanoparticles/chitosan with modified gold electrode for determination of melamine in milk product, Sens. Biosensing Res. 4 (2015) 16-22. https://doi.org/10.1016/j.sbsr.2015.02.003
[63] R. Wang, T. Okajima, F. Kitamura, T. Ohsaka, A novel amperometric O2 gas sensor based on supported room‐temperature ionic liquid porous polyethylene membrane‐coated electrodes, Electroanalysis, 16 (2004) 66-72. https://doi.org/10.1002/elan.200302919
[64] M.C. Buzzeo, C. Hardacre, R.G. Compton, Use of room temperature ionic liquids in gas sensor design, Anal. Chem. 76 (2004) 4583-4588. https://doi.org/10.1021/ac040042w
[65] R. Wang, S. Hoyano, T. Ohsaka, O2 gas sensor using supported hydrophobic room-temperature ionic liquid membrane-coated electrode, Chem. Lett. 33 (2003) 6-7. https://doi.org/10.1246/cl.2004.6
[66] T. Schäfer, F. Di Francesco, R. Fuoco, Ionic liquids as selective depositions on quartz crystal microbalances for artificial olfactory systems-A feasibility study, Microchem. J. 85 (2007) 52-56. https://doi.org/10.1016/j.microc.2006.06.001
[67] L.E. Barrosse-Antle, R.G. Compton, Reduction of carbon dioxide in 1-butyl-3-methylimidazolium acetate, Chem. Comm. (2009) 3744-3746. https://doi.org/10.1039/b906320j
[68] O. Oter, G. Sabancı, K. Ertekin, Enhanced CO2 sensing with ionic liquid modified electrospun nanofibers: effect of ionic liquid type, Sensor Lett. 11 (2013) 1591-1599. https://doi.org/10.1166/sl.2013.3022
[69] S. Aydogdu, K. Ertekin, M. Gocmenturk, Y. Ergun, E. Celik, Emission based sensing of subnanomolar dissolved carbon dioxide exploiting electrospun nanofibers, Int. J. Polym. Mater. Po. 63 (2014) 197-206. https://doi.org/10.1080/00914037.2013.812091
[70] S.M. Borisov, M.C. Waldhier, I. Klimant, O.S. Wolfbeis, Optical carbon dioxide sensors based on silicone-encapsulated room-temperature ionic liquids, Chem. Mater. 19 (2007) 6187-6194. https://doi.org/10.1021/cm7019312
[71] Y. Liu, Y. Tang, N.N. Barashkov, I.S. Irgibaeva, J.W. Lam, R. Hu, D. Birimzhanova, Y. Yu, B.Z. Tang, Fluorescent chemosensor for detection and quantitation of carbon dioxide gas, J. Am. Chem. Soc. 132 (2010) 13951-13953. https://doi.org/10.1021/ja103947j
[72] Z. Guo, N.R. Song, J.H. Moon, M. Kim, E.J. Jun, J. Choi, J.Y. Lee, C.W. Bielawski, J.L. Sessler, J. Yoon, A benzobisimidazolium-based fluorescent and colorimetric chemosensor for CO2, J. Am. Chem. Soc. 134 (2012) 17846-17849. https://doi.org/10.1021/ja306891c
[73] S. Rostami, A. Mehdinia, A. Jabbari, E. Kowsari, R. Niroumand, T.J. Booth, Colorimetric sensing of dopamine using hexagonal silver nanoparticles decorated by task-specific pyridinum based ionic liquid, Sensor Actuator B Chem. 271 (2018) 64-72. https://doi.org/10.1016/j.snb.2018.05.116
[74] S. Kim, S.G. Han, Y.G. Koh, H. Lee, W. Lee, Colorimetric humidity sensor using inverse opal photonic gel in hydrophilic ionic liquid, Sensors, 18 (2018) 1357-1357. https://doi.org/10.3390/s18051357
[75] S. Das, P.K. Magut, S.L. de Rooy, F. Hasan, I.M. Warner, Ionic liquid-based fluorescein colorimetric pH nanosensors, RSC advance. 3 (2013) 21054-21061. https://doi.org/10.1039/c3ra42394h
[76] W.I.S. Galpothdeniya, K.S. McCarter, S.L. De Rooy, B.P. Regmi, S. Das, F. Hasan, A. Tagge, I.M. Warner, Ionic liquid-based optoelectronic sensor arrays for chemical detection, RSC Advance. 4 (2014) 7225-7234. https://doi.org/10.1039/c3ra47518b
[77] S. Rauf, M.A.H. Nawaz, N. Muhammad, R. Raza, S.A. Shahid, J.L. Marty, A. Hayat, Protic ionic liquids as a versatile modulator and stabilizer in regulating artificial peroxidase activity of carbon materials for glucose colorimetric sensing, J. Mol. Liq. 243 (2017) 333-340. https://doi.org/10.1016/j.molliq.2017.08.059
[78] Z. Li, Y. Yang, Y. Zeng, J. Wang, H. Liu, L. Guo, L. Li, Novel imidazole fluorescent poly (ionic liquid) nanoparticles for selective and sensitive determination of pyrogallol, Talanta, 174 (2017) 198-205. https://doi.org/10.1016/j.talanta.2017.06.007
[79] H. Zhang, S. Qi, Y. Dong, X. Chen, Y. Xu, Y. Ma, X. Chen, A sensitive colorimetric method for the determination of nitrite in water supplies, meat and dairy products using ionic liquid-modified methyl red as a colour reagent, Food Chem. 151 (2014) 429-434. https://doi.org/10.1016/j.foodchem.2013.11.016