Supercritical CO2 Application in Essential Oil Extraction

$20.00

Supercritical CO2 Application in Essential Oil Extraction

Mozaniel Santana de Oliveira, Sebastião Gomes Silva, Jorddy Neves da Cruz, Eduardo Ortiz, Wanessa Almeida da Costa, Fernanda Wariss Figueiredo Bezerra, Vânia Maria Borges Cunha, Renato Macedo Cordeiro, Antônio Maia de Jesus Chaves Neto, et al.

The supercritical CO2 has demonstrated efficiency and selectivity for the extraction of essential oils from vegetable matrices. This technique is based on the solvation power of the supercritical CO2, and the solute-solvent interactions can be altered depending on the operating parameters used. These changes can result in an increase in the essential oil solubility and consequent increase in its yield. Supercritical CO2 combines properties of gases and liquids, and one of its advantages is that it leaves no residues in the essential oil.

Keywords
Natural Products, Essential Oils, CO2 Extraction

Published online 8/20/2019, 28 pages

Citation: Mozaniel Santana de Oliveira, Sebastião Gomes Silva, Jorddy Neves da Cruz, Eduardo Ortiz, Wanessa Almeida da Costa, Fernanda Wariss Figueiredo Bezerra, Vânia Maria Borges Cunha, Renato Macedo Cordeiro, Antônio Maia de Jesus Chaves Neto, et al., Supercritical CO2 Application in Essential Oil Extraction, Materials Research Foundations, Vol. 54, pp 1-28, 2019

DOI: https://doi.org/10.21741/9781644900314-1

Part of the book on Industrial Applications of Green Solvents

References
[1] F. Shahidi, P. Ambigaipalan, Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects – A review, J. Funct. Foods. 18 (2015) 820–897. https://doi.org/10.1016/j.jff.2015.06.018
[2] K. Leslie, M.L. Allen, E.C. Hessian, P.J. Peyton, J. Kasza, A. Courtney, P.A. Dhar, J. Briedis, S. Lee, A.R. Beeton, D. Sayakkarage, S. Palanivel, J.K. Taylor, A.J. Haughton, C.X. O’Kane, Safety of sedation for gastrointestinal endoscopy in a group of university-affiliated hospitals: A prospective cohort study, Br. J. Anaesth. 118 (2017) 90–99. https://doi.org/10.1093/bja/aew393
[3] C. López-Alarcón, A. Denicola, Evaluating the antioxidant capacity of natural products: A review on chemical and cellular-based assays, Anal. Chim. Acta. 763 (2013) 1–10. https://doi.org/10.1016/j.aca.2012.11.051
[4] A. Filly, X. Fernandez, M. Minuti, F. Visinoni, G. Cravotto, F. Chemat, Solvent-free microwave extraction of essential oil from aromatic herbs: From laboratory to pilot and industrial scale, Food Chem. 150 (2014) 193–198. https://doi.org/10.1016/j.foodchem.2013.10.139
[5] F. V. Silva, A.G. Guimarães, E.R.S. Silva, B.P. Sousa-Neto, F.D.F. Machado, L.J. Quintans-Júnior, D.D.R. Arcanjo, F.A. Oliveira, R.C.M. Oliveira, Anti-inflammatory and anti-ulcer activities of carvacrol, a monoterpene present in the essential oil of Oregano, J. Med. Food. 15 (2012) 984–991. https://doi.org/10.1089/jmf.2012.0102
[6] I.P. Sauter, G.E. Rossa, A.M. Lucas, S.P. Cibulski, P.M. Roehe, L.A.A. da Silva, M.B. Rott, R.M.F. Vargas, E. Cassel, G.L. von Poser, Chemical composition and amoebicidal activity of Piper hispidinervum (Piperaceae) essential oil, Ind. Crops Prod. 40 (2012) 292–295. https://doi.org/10.1016/j.indcrop.2012.03.025
[7] R.R. Junker, D. Tholl, Volatile organic compound mediated interactions at the plant-microbe interface, J. Chem. Ecol. 39 (2013) 810–825. https://doi.org/10.1007/s10886-013-0325-9
[8] G.İ. Tanrıkulu, Ö. Ertürk, C. Yavuz, Z. Can, H.E. Çakır, Chemical compositions, antioxidant and antimicrobial activities of the essential oil and extracts of Lamiaceae family (Ocimum basilicum and Thymbra spicata) from Turkey, Int. J. Second. Metab. 4 (2017) 340–348. https://doi.org/10.21448/ijsm.373828
[9] C.M.O. Azeredo, T.G. Santos, B.H.L. de N.S. Maia, M.J. Soares, In vitro biological evaluation of eight different essential oils against Trypanosoma cruzi, with emphasis on Cinnamomum verum essential oil, BMC Complement. Altern. Med. 14 (2014) 1–8. https://doi.org/10.1186/1472-6882-14-309
[10] A. Aharoni, M.A. Jongsma, H.J. Bouwmeester, Volatile science? Metabolic engineering of terpenoids in plants, Trends Plant Sci. 10 (2005) 594–602. https://doi.org/10.1016/j.tplants.2005.10.005
[11] Z.A.A. Aziz, A. Ahmad, S.H.M. Setapar, A. Karakucuk, M.M. Azim, D. Lokhat, M.A. Kamal, G.M. Ashraf, Essential oils: Extraction techniques, pharmaceutical and therapeutic potential – A review, Curr. Drug Metab. 19 (2018). https://doi.org/10.2174/1389200219666180723144850
[12] T. Fornari, G. Vicente, E. Vázquez, M.R. García-Risco, G. Reglero, Isolation of essential oil from different plants and herbs by supercritical fluid extraction, J. Chromatogr. A. 1250 (2012) 34–48. https://doi.org/10.1016/j.chroma.2012.04.051
[13] L.T. Danh, N.D.A. Triet, L.T.N. Han, J. Zhao, R. Mammucari, N. Foster, Antioxidant activity, yield and chemical composition of lavender essential oil extracted by supercritical CO2, J. Supercrit. Fluids. 70 (2012) 27–34. https://doi.org/10.1016/j.supflu.2012.06.008
[14] I.L.M. Barzotto, K.A. Santos, E.A. da Silva, A.C. Sene, N.S. da Silva, L. Vieira, Supercritical extraction of Eugenia involucrata leaves: Influence of operating conditions on yield and Α-tocopherol content, J. Supercrit. Fluids. 143 (2019) 55–63. https://doi.org/10.1016/j.supflu.2018.08.003
[15] S. Bilgiç-Keleş, N. Şahin-Yeşilçubuk, A. Barla-Demirkoz, M. Karakaş, Response surface optimization and modelling for supercritical carbon dioxide extraction of Echium vulgare seed oil, J. Supercrit. Fluids. 143 (2019) 365–369. https://doi.org/10.1016/j.supflu.2018.09.008
[16] R.P. Cuco, L. Cardozo-Filho, C. da Silva, Simultaneous extraction of seed oil and active compounds from peel of pumpkin (Cucurbita maxima) using pressurized carbon dioxide as solvent, J. Supercrit. Fluids. 143 (2019) 8–15. https://doi.org/10.1016/j.supflu.2018.08.002
[17] P.C. Frohlich, K.A. Santos, F. Palú, L. Cardozo-Filho, C. da Silva, E.A. da Silva, Evaluation of the effects of temperature and pressure on the extraction of eugenol from clove (Syzygium aromaticum) leaves using supercritical CO2, J. Supercrit. Fluids. 143 (2019) 313–320. https://doi.org/10.1016/j.supflu.2018.09.009
[18] I. Lemonis, D. Tsimogiannis, V. Louli, E. Voutsas, V. Oreopoulou, K. Magoulas, Extraction of Dittany (Origanum dictamnus) using supercritical CO2 and liquid solvent, J. Supercrit. Fluids. 76 (2013) 48–53. https://doi.org/10.1016/j.supflu.2013.01.019
[19] H. Sovova, M. Sajfrtova, M. Topiar, Supercritical CO2 extraction of volatile thymoquinone from Monarda didyma and M. fistulosa herbs, J. Supercrit. Fluids. 105 (2015) 29–34. https://doi.org/10.1016/j.supflu.2015.01.004
[20] M.S. de Oliveira, J.N. da Cruz, S. Gomes Silva, W.A. da Costa, S.H.B. de Sousa, F.W.F. Bezerra, E. Teixeira, N.J.N. da Silva, E.H. de Aguiar Andrade, A.M. de Jesus Chaves Neto, R.N. de Carvalho, Phytochemical profile, antioxidant activity, inhibition of acetylcholinesterase and interaction mechanism of the major components of the Piper divaricatum essential oil obtained by supercritical CO2, J. Supercrit. Fluids. 145 (2019) 74–84. https://doi.org/10.1016/j.supflu.2018.12.003
[21] G.N. Sapkale, S.M. Patil, U.S. Surwase, P.K. Bhatbhage, Supercritical fluid extraction – a review, Int. J. Chem. Sci. 8 (2010) 729–743.
[22] G. Brunner, Gas extraction- An introduction to fundamentals of supercritical fluids and the application to separation processes, Steinkopff, Heidelberg, 1994.
[23] Y. Naudé, W.H.J. De Beer, S. Jooste, L. Van Der Merwe, S.J. Van Rensburg, Comparison of supercritical fluid extraction and soxhlet extraction for the determination of DDT , DDD and DDE in sediment, Water South Africa, 24 (1998) 205–214.
[24] M. Herrero, J.A. Mendiola, A. Cifuentes, E. Ibáñez, Supercritical fluid extraction: Recent advances and applications, J. Chromatogr. A. 1217 (2010) 2495–2511. https://doi.org/10.1016/j.chroma.2009.12.019
[25] R. Parhi, P. Suresh, Supercritical fluid technology: A review, J. Adv. Pharm. Sci. Technol. 1 (2013) 13–36.
[26] G. Brunner, Applications of supercritical fluids, Annu. Rev. Chem. Biomol. Eng. 1 (2010) 321–342. https://doi.org/10.1146/annurev-chembioeng-073009-101311
[27] G. Brunner, Industrial process development countercurrent multistage gas extraction (SFE) processes, J. Supercrit. Fluids. 13 (1998) 283–301.
[28] E. Reverchon, Supercritical fluid extraction and fractionation of essential oils and related products, J. Supercrit. Fluids, 10 (1997) 1–37. https://doi.org/10.1016/s0896-8446(97)00014-4
[29] C. Grosso, J.P. Coelho, F.L.P. Pessoa, J.M.N.A. Fareleira, J.G. Barroso, J.S. Urieta, A.F. Palavra, H. Sovová, Mathematical modelling of supercritical CO2 extraction of volatile oils from aromatic plants, Chem. Eng. Sci. 65 (2010) 3579–3590. https://doi.org/10.1016/j.ces.2010.02.046
[30] E.R. Gilliland, Diffusion coefficients in gaseous systems, Ind. Eng. Chem. 26 (1934) 681–685. https://doi.org/10.1021/ie50294a020
[31] S. Chapman, T.G. Cowling, D. Burnett, The mathematical theory of non-uniform gases: an account of the kinetic theory of viscosity, thermal conduction and diffusion in gases, Ed. 3, Cambridge university press, Cambridge, United Kingdom, 1990. https://doi.org/10.2307/3609795
[32] C.R. Wilke, P. Chang, Correlation of diffusion coefficients in dilute solutions, AIChE J. 1 (1955) 264–270. https://doi.org/10.1002/aic.690010222
[33] M.A. Siddiqi, K. Lucas, Correlations for prediction of diffusion in liquids, Can. J. Chem. Eng. 64 (1986) 839–843. https://doi.org/10.1002/cjce.5450640519
[34] C.C. Lai, C.S. Tan, Measurement of molecular diffusion coefficient in supercritical carbon dioxide using a coated capillary column, Ind. Eng. Chem. Res. 34 (1995) 674–680. https://doi.org/10.1021/ie00041a029
[35] T. Funazukuri, C.Y. Kong, N. Murooka, S. Kagei, Measurements of Binary Diffusion Coefficients and partition ratios for acetone, phenol, alpha-tocopherol, and beta-carotene in supercritical carbon dioxide with a Poly(ethylene glycol)-coated capillary column, Ind. Eng. Chem. Res. 39 (2000) 4462–4469. https://doi.org/10.1021/ie000201b
[36] A.A. Clifford, J.R. Williams, Introduction to supercritical fluids and their applications, in: A.A. Clifford, J.R. Williams (Eds.) Supercritical Fluid Methods and protocols. Methods in Biotechnology 13, Humana Press, 2000, pp. 1–16. https://doi.org/10.1385/1-59259-030-6:1
[37] R.L. Mendes, B.P. Nobre, M.T. Cardoso, A.P. Pereira, A.F. Palavra, Supercritical carbon dioxide extraction of compounds with pharmaceutical importance from microalgae, Inorganica Chim. Acta. 356 (2003) 328–334. https://doi.org/10.1016/s0020-1693(03)00363-3
[38] S.S. Petrović, J. Ivanović, S. Milovanović, I. ŽIžović, Comparative analyses of the diffusion coefficients from thyme for different extraction processes, J. Serbian Chem. Soc. 77 (2012) 799–813. https://doi.org/10.2298/jsc110616009p
[39] R. V. Vaz, J.R.B. Gomes, C.M. Silva, Molecular dynamics simulation of diffusion coefficients and structural properties of ketones in supercritical CO2 at infinite dilution, J. Supercrit. Fluids, 107 (2016) 630–638. https://doi.org/10.1016/j.supflu.2015.07.025
[40] H. Higashi, Y. Iwai, H. Uchida, Y. Arai, Diffusion coefficients of aromatic compounds in supercritical carbon dioxide using molecular dynamics simulation, J. Supercrit. Fluids, 13 (1998) 93–97.
[41] H. Higashi, Y. Iwai, Y. Arai, Calculation of self-diffusion and tracer diffusion coefficients near the critical point of carbon dioxide using molecular dynamics simulation, Ind. Eng. Chem. Res. 39 (2000) 4567–4570. https://doi.org/10.1021/ie000173x
[42] J. Wang, H. Zhong, H. Feng, W. Qiu, L. Chen, Molecular dynamics simulation of diffusion coefficients and structural properties of some alkylbenzenes in supercritical carbon dioxide at infinite dilution, J. Chem. Phys. 140 (2014) 104501. https://doi.org/10.1063/1.4867274
[43] R. Ravi, V. Guruprasad, Lennard-jones fluid and diffusivity: Validity of the hard-sphere model for diffusion in simple fluids and application to CO2, Ind. Eng. Chem. Res. 47 (2008) 1297–1303. https://doi.org/10.1021/ie071073v
[44] H. Higashi, K. Tamura, Calculation of diffusion coefficient for supercritical carbon dioxide and carbon dioxide+naphthalene system by molecular dynamics simulation using EPM2 model, Mol. Simul. 36 (2010) 772–777. https://doi.org/10.1080/08927021003752846
[45] J.H. Yoo, A. Breitholz, Y. Iwai, K.P. Yoo, Diffusion coefficients of supercritical carbon dioxide and its mixtures using molecular dynamic simulations, Korean J. Chem. Eng. 29 (2012) 935–940. https://doi.org/10.1007/s11814-011-0248-5
[46] T.M. Yigzawe, R.J. Sadus, Intermolecular interactions and the thermodynamic properties of supercritical fluids, J. Chem. Phys. 138 (2013) 194502. https://doi.org/10.1063/1.4803855
[47] A. Laesecke, C.D. Muzny, Reference correlation for the viscosity of carbon dioxide, J. Phys. Chem. Ref. Data. 46 (2017).
[48] P.E. Savage, S. Gopalan, T.I. Mizan, C.J. Martino, E.E. Brock, Reactions at supercritical conditions: Applications and fundamentals, AIChE J. 41 (1995) 1723–1778. https://doi.org/10.1002/aic.690410712
[49] R. Krishna, J.M. van Baten, Describing diffusion in fluid mixtures at elevated pressures by combining the Maxwell–Stefan formulation with an equation of state, Chem. Eng. Sci. 153 (2016) 174–187. https://doi.org/10.1016/j.ces.2016.07.025
[50] D.Y. Peng, D.B. Robinson, A New Two-Constant Equation of State, Ind. Eng. Chem. Fund. 15 (1976) 59–64.
[51] A. Rai, K.D. Punase, B. Mohanty, R. Bhargava, Evaluation of models for supercritical fluid extraction, Int. J. Heat Mass Transf. 72 (2014) 274–287. https://doi.org/10.1016/j.ijheatmasstransfer.2014.01.011
[52] V. Abrahamsson, N. Andersson, B. Nilsson, C. Turner, Method development in inverse modeling applied to supercritical fluid extraction of lipids, J. Supercrit. Fluids, 111 (2016) 14–27. https://doi.org/10.1016/j.supflu.2016.01.006
[53] M. Poletto, E. Reverchon, Comparison of models for supercritical fluid extraction of seed and essential oils in relation to the mass-transfer rate, Ind. Eng. Chem. Res. 35 (1996) 3680–3686. https://doi.org/10.1021/ie9600093
[54] X. Han, L. Cheng, R. Zhang, J. Bi, Extraction of safflower seed oil by supercritical CO2, J. Food Eng. 92 (2009) 370–376. https://doi.org/10.1016/j.jfoodeng.2008.12.002
[55] A.G. Egorov, A.A. Salamatin, Bidisperse shrinking core model for supercritical fluid extraction, Chem. Eng. Technol. 38 (2015) 1203–1211. https://doi.org/10.1002/ceat.201400627
[56] H. Sovová, Steps of supercritical fluid extraction of natural products and their characteristic times, J. Supercrit. Fluids, 66 (2012) 73–79. https://doi.org/10.1016/j.supflu.2011.11.004
[57] Z. Zeković, S. Filip, S. Vidović, S. Jokić, S. Svilović, Mathematical modeling of Ocimum basilicum L. supercritical CO2 extraction, Chem. Eng. Technol. 37 (2014) 2123–2128. https://doi.org/10.1002/ceat.201400322
[58] A.A. Salamatin, Detection of microscale mass-transport regimes in supercritical fluid extraction, Chem. Eng. Technol. 40 (2017) 829–837. https://doi.org/10.1002/ceat.201600599
[59] S.M. Pourmortazavi, S.S. Hajimirsadeghi, Supercritical fluid extraction in plant essential and volatile oil analysis, J. Chromatogr. A. 1163 (2007) 2–24. https://doi.org/10.1016/j.chroma.2007.06.021
[60] E.M. Reis-Vasco, J.A. Coelho, A.M. Palavra, C. Marrone, E. Reverchon, Mathematical modelling and simulation of pennyroyal essential oil supercritical extraction, Chem. Eng. Sci. 55 (2000) 2917–2922. https://doi.org/10.1016/s0009-2509(99)00561-8
[61] F. Gaspar, T. Lu, R. Santos, B. Al-Duri, Modelling the extraction of essential oils with compressed carbon dioxide, J. Supercrit. Fluids. 25 (2003) 247–260. https://doi.org/10.1016/s0896-8446(02)00149-3
[62] M. Nejad-Sadeghi, S. Taji, I. Goodarznia, Optimization of supercritical carbon dioxide extraction of essential oil from Dracocephalum kotschyi Boiss: An endangered medicinal plant in Iran, J. Chromatogr. A. 1422 (2015) 73–81. https://doi.org/10.1016/j.chroma.2015.10.040
[63] M.S. de Oliveira, W.A. da Costa, D.S. Pereira, J.R.S. Botelho, T.O. de Alencar Menezes, E.H. de Aguiar Andrade, S.H.M. da Silva, A.P. da Silva Sousa Filho, R.N. de Carvalho, Chemical composition and phytotoxic activity of clove (Syzygium aromaticum) essential oil obtained with supercritical CO2, J. Supercrit. Fluids, 118 (2016) 185–193. https://doi.org/10.1016/j.supflu.2016.08.010
[64] M.S. de Oliveira, W.A. da Costa, D.S. Pereira, J.R.S. Botelho, T.O. de Alencar Menezes, E.H. de Aguiar Andrade, S.H.M. da Silva, A.P. da Silva Sousa Filho, R.N. de Carvalho, Chemical composition and phytotoxic activity of clove (Syzygium aromaticum) essential oil obtained with supercritical CO2, J. Supercrit. Fluids, 118 (2016) 185–193. https://doi.org/10.1016/j.supflu.2016.08.010
[65] A. Mouahid, C. Crampon, S.-A.A. Toudji, E. Badens, Effects of high water content and drying pre-treatment on supercritical CO2 extraction from Dunaliella salina microalgae: experiments and modelling, J. Supercrit. Fluids. 116 (2016) 271–280. https://doi.org/10.1016/j.supflu.2016.06.007
[66] J.T. Paula, L.C. Paviani, M.A. Foglio, I.M.O. Sousa, F.A. Cabral, Extraction of anthocyanins from Arrabidaea chica in fixed bed using CO2 and CO2/ethanol/water mixtures as solvents, J. Supercrit. Fluids, 81 (2013) 33–41. https://doi.org/10.1016/j.supflu.2013.04.009
[67] M. Bimakr, R.A. Rahman, A. Ganjloo, F.S. Taip, L.M. Salleh, M.Z.I. Sarker, Optimization of supercritical carbon dioxide extraction of bioactive flavonoid compounds from Spearmint (Mentha spicata L.) leaves by using response surface methodology, Food Bioprocess Technol. 5 (2012) 912–920. https://doi.org/10.1007/s11947-010-0504-4
[68] S. Ghosh, D. Chatterjee, S. Das, P. Bhattacharjee, Supercritical carbon dioxide extraction of eugenol-rich fraction from Ocimum sanctum Linn and a comparative evaluation with other extraction techniques: Process optimization and phytochemical characterization, Ind. Crops Prod. 47 (2013) 78–85. https://doi.org/10.1016/j.indcrop.2013.02.030
[69] T.T. Garmus, L.C. Paviani, C.L. Queiroga, F.A. Cabral, Extraction of phenolic compounds from pepper-rosmarin (Lippia sidoides Cham.) leaves by sequential extraction in fixed bed extractor using supercritical CO2, ethanol and water as solvents, J. Supercrit. Fluids, 99 (2015) 68–75. https://doi.org/10.1016/j.supflu.2015.01.016
[70] R. Scopel, M.A. Falcão, A.M. Lucas, R.N. Almeida, P.H.K. Gandolfi, E. Cassel, R.M.F. Vargas, Supercritical fluid extraction from Syzygium aromaticum buds: Phase equilibrium, mathematical modeling and antimicrobial activity, J. Supercrit. Fluids, 92 (2014) 223–230. https://doi.org/10.1016/j.supflu.2014.06.003
[71] G. Sodeifian, S.A. Sajadian, N. Saadati Ardestani, Experimental optimization and mathematical modeling of the supercritical fluid extraction of essential oil from Eryngium billardieri: Application of simulated annealing (SA) algorithm, J. Supercrit. Fluids, 127 (2017) 146–157. https://doi.org/10.1016/j.supflu.2017.04.007
[72] A. El Asbahani, K. Miladi, W. Badri, M. Sala, E.H.H.A. Addi, H. Casabianca, A. El Mousadik, D. Hartmann, A. Jilale, F.N.R. Renaud, A. Elaissari, Essential oils: From extraction to encapsulation, Int. J. Pharm. 483 (2015) 220–243. https://doi.org/10.1016/j.ijpharm.2014.12.069
[73] Y. Li, A.-S. Fabiano-Tixier, F. Chemat, Essential oils as reagents in green chemistry, Ed. 1, Springer International Publishing, Switzerland, 2014. https://doi.org/10.1007/978-3-319-08449-7
[74] A. Zermane, O. Larkeche, A.-H. Meniai, C. Crampon, E. Badens, Optimization of essential oil supercritical extraction from Algerian Myrtus communis L. leaves using response surface methodology, J. Supercrit. Fluids. 85 (2014) 89–94. https://doi.org/10.1016/j.supflu.2013.11.002
[75] S. Zhao, D. Zhang, Supercritical CO2 extraction of Eucalyptus leaves oil and comparison with Soxhlet extraction and hydrodistillation methods, Sep. Purif. Technol. 133 (2014) 443–451. https://doi.org/10.1016/j.seppur.2014.07.018
[76] N.P. Povh, M.O.M. Marques, M.A.A. Meireles, Supercritical CO2 extraction of essential oil and oleoresin from chamomile (Chamomilla recutita [L.] Rauschert), J. Supercrit. Fluids, 21 (2001) 245–256. https://doi.org/10.1016/s0896-8446(01)00096-1
[77] A. Nematollahi, H. Kamali, N. Aminimoghadamfarouj, E. Golmakani, The optimization of essential oils supercritical CO2 extraction from Lavandula hybrida through static-dynamic steps procedure and semi-continuous technique using response surface method, Pharmacognosy Res. 7 (2015) 57. https://doi.org/10.4103/0974-8490.147209
[78] T. Suetsugu, M. Tanaka, H. Iwai, T. Matsubara, Y. Kawamoto, C. Saito, Y. Sasaki, M. Hoshino, A.T. Quitain, M. Sasaki, J. Sakamoto, M. Goto, Supercritical CO2 extraction of essential oil from Kabosu (Citrus sphaerocarpa Tanaka) peel, Flavour, 2 (2013) 18. https://doi.org/10.1186/2044-7248-2-18
[79] L.A. Conde-Hernández, J.R. Espinosa-Victoria, J.Á. Guerrero-Beltrán, Supercritical extraction of essential oils of Piper auritum and Porophyllum ruderale, J. Supercrit. Fluids, 127 (2017) 97–102. https://doi.org/10.1016/j.supflu.2017.03.026
[80] O. Larkeche, A. Zermane, A. H. Meniai, C. Crampon, E. Badens, Supercritical extraction of essential oil from Juniperus communis L. needles: Application of response surface methodology, J. Supercrit. Fluids, 99 (2015) 8–14. https://doi.org/10.1016/j.supflu.2015.01.026
[81] N.M. Shrigod, N.R. Swami Hulle, R. V. Prasad, Supercritical fluid extraction of essential oil from mint leaves ( mentha spicata ): Process optimization and its quality evaluation, J. Food Process Eng. 40 (2017) e12488. https://doi.org/10.1111/jfpe.12488
[82] Y.Y. Andrade-Avila, J. Cruz-Olivares, C. Pérez-Alonso, C.H. Ortiz-Estrada, M. del C. Chaparro-Mercado, Supercritical extraction process of allspice essential oil, J. Chem. 2017 (2017) 1–8. https://doi.org/10.1155/2017/6471684
[83] N. Herzi, S. Camy, J. Bouajila, P. Destrac, M. Romdhane, J. S. Condoret, Supercritical CO2 extraction of Tetraclinis articulata: Chemical composition, antioxidant activity and mathematical modeling, J. Supercrit. Fluids, 82 (2013) 72–82. https://doi.org/10.1016/j.supflu.2013.06.007
[84] N.S.M. Norodin, L.M. Salleh, Hartati, N.M. Mustafa, Supercritical carbon dioxide (SC-CO2 ) extraction of essential oil from Swietenia mahagoni seeds, IOP Conf. Ser. Mater. Sci. Eng. 162 (2016) 012030. https://doi.org/10.1088/1757-899x/162/1/012030
[85] A. Donelian, L.H.C. Carlson, T.J. Lopes, R.A.F. Machado, Comparison of extraction of patchouli (Pogostemon cablin) essential oil with supercritical CO2 and by steam distillation, J. Supercrit. Fluids, 48 (2009) 15–20. https://doi.org/10.1016/j.supflu.2008.09.020
[86] Z. Zekovic, Z. Lepojevic, S. Milic, D. Adamovic, I. Mujic, Supercritical CO2 extraction of Mentha (Mentha piperita L.) at different solvent densities, J. Serbian Chem. Soc. 74 (2009) 417–425. https://doi.org/10.2298/jsc0904417z
[87] A.L. Chassagnez-Méndez, N.T. Machado, M.E. Araujo, J.G. Maia, M.A.A. Meireles, Supercritical CO2 extraction of curcumins and essential oil from the rhizomes of turmeric ( Curcuma longa L.), Ind. Eng. Chem. Res. 39 (2000) 4729–4733. https://doi.org/10.1021/ie000171c
[88] G. Sodeifian, N. Saadati Ardestani, S.A. Sajadian, S. Ghorbandoost, Application of supercritical carbon dioxide to extract essential oil from Cleome coluteoides Boiss: Experimental, response surface and grey wolf optimization methodology, J. Supercrit. Fluids, 114 (2016) 55–63. https://doi.org/10.1016/j.supflu.2016.04.006
[89] L.A. Conde-Hernández, J.R. Espinosa-Victoria, A. Trejo, J.Á. Guerrero-Beltrán, CO 2 -supercritical extraction, hydrodistillation and steam distillation of essential oil of rosemary ( Rosmarinus officinalis ), J. Food Eng. 200 (2017) 81–86. https://doi.org/10.1016/j.jfoodeng.2016.12.022
[90] H. Bagheri, M.Y. Bin Abdul Manap, Z. Solati, Antioxidant activity of Piper nigrum L. essential oil extracted by supercritical CO2 extraction and hydro-distillation, Talanta, 121 (2014) 220–228. https://doi.org/10.1016/j.talanta.2014.01.007
[91] G. Sodeifian, S.A. Sajadian, N. Saadati Ardestani, Optimization of essential oil extraction from Launaea acanthodes Boiss: Utilization of supercritical carbon dioxide and cosolvent, J. Supercrit. Fluids. 116 (2016) 46–56. https://doi.org/10.1016/j.supflu.2016.05.015
[92] A. Zermane, O. Larkeche, A.H. Meniai, C. Crampon, E. Badens, Optimization of Algerian rosemary essential oil extraction yield by supercritical CO2 using response surface methodology, Comptes Rendus Chim. 19 (2016) 538–543. https://doi.org/10.1016/j.crci.2015.08.011
[93] E. Uquiche, N. Cirano, S. Millao, Supercritical fluid extraction of essential oil from Leptocarpha rivularis using CO2, Ind. Crops Prod. 77 (2015) 307–314. https://doi.org/10.1016/j.indcrop.2015.09.001
[94] P.C. Frohlich, K.A. Santos, F. Palú, L. Cardozo-Filho, C. da Silva, E.A. da Silva, Evaluation of the effects of temperature and pressure on the extraction of eugenol from clove (Syzygium aromaticum) leaves using supercritical CO2, J. Supercrit. Fluids, 143 (2019) 313–320. https://doi.org/10.1016/j.supflu.2018.09.009
[95] L. Pistelli, S. Giovanelli, P. Margari, C. Chiappe, Considerable effect of dimethylimidazolium dimethylphosphate in cinnamon essential oil extraction by hydrodistillation, RSC Adv. 6 (2016) 52421–52426. https://doi.org/10.1039/c6ra11487c
[96] S.G. Silva, R.A. da Costa, M.S. de Oliveira, J.N. da Cruz, P.L.B. Figueiredo, D. do S.B. Brasil, L.D. Nascimento, A.M. de J. Chaves Neto, R.N. de Carvalho Junior, E.H. de A. Andrade, Chemical profile of Lippia thymoides, evaluation of the acetylcholinesterase inhibitory activity of its essential oil, and molecular docking and molecular dynamics simulations, PLoS One. 14 (2019) e0213393. https://doi.org/10.1371/journal.pone.0213393
[97] A. Filly, X. Fernandez, M. Minuti, F. Visinoni, G. Cravotto, F. Chemat, Solvent-free microwave extraction of essential oil from aromatic herbs: From laboratory to pilot and industrial scale, Food Chem. 150 (2014) 193–198. https://doi.org/10.1016/j.foodchem.2013.10.139
[98] M. Vinatoru, An overview of the ultrasonically assisted extraction of bioactive principles from herbs, Ultrason. Sonochem. 8 (2001) 303–313. https://doi.org/10.1016/s1350-4177(01)00071-2
[99] P.L.B. Figueiredo, R.C. Silva, J.K.R. da Silva, C. Suemitsu, R.H. V. Mourão, J.G.S. Maia, Chemical variability in the essential oil of leaves of Araçá (Psidium guineense Sw.), with occurrence in the Amazon, Chem. Cent. J. 12 (2018) 52. https://doi.org/10.1186/s13065-018-0428-z
[100] J.G.S. Maia, E.H.A. Andrade, Database of the Amazon aromatic plants and their essential oils, Quim. Nova. 32 (2009) 595–622. https://doi.org/10.1590/s0100-40422009000300006
[101] F. Augusto, A. Leite e Lopes, C.A. Zini, Sampling and sample preparation for analysis of aromas and fragrances, TrAC Trends Anal. Chem. 22 (2003) 160–169. https://doi.org/10.1016/s0165-9936(03)00304-2
[102] E.-S.S. Abdel-Hameed, M.S. Salman, M.A. Fadl, A. Elkhateeb, M.M. Hassan, Chemical composition and biological activity of Mentha longifolia L. Essential oil growing in Taif, KSA extracted by hydrodistillation, Solvent free microwave and microwave hydrodistillation, J. Essent. Oil Bear. Plants. 21 (2018) 1–14. https://doi.org/10.1080/0972060x.2018.1454343
[103] M. Moridi Farimani, F. Mirzania, A. Sonboli, F.M. Moghaddam, Chemical composition and antibacterial activity of Dracocephalum kotschyi essential oil obtained by microwave extraction and hydrodistillation, Int. J. Food Prop. 20 (2017) 306–315. https://doi.org/10.1080/10942912.2017.1295987
[104] S. Burt, Essential oils: their antibacterial properties and potential applications in foods-A review, Int. J. Food Microbiol. 94 (2004) 223–253. https://doi.org/10.1016/j.ijfoodmicro.2004.03.022
[105] E. Cassel, R.M.F. Vargas, Experiments and modeling of the Cymbopogon winterianus essential oil extraction by steam distillation, Journal of the Mexican Chemical Society 50 (2006) 126–129.
[106] N.V. Busato, J.C. Silveira, A.O.S. da Costa, E.F. da Costa Junior, Estratégias de modelagem da extração de óleos essenciais por hidrodestilacao e destilacao a vapor, Ciencia Rural. 44 (2014) 1574–1582. https://doi.org/10.1590/0103-8478cr20121330
[107] L.T. Danh, L.N. Han, N.D.A. Triet, J. Zhao, R. Mammucari, N. Foster, Comparison of chemical composition, antioxidant and antimicrobial activity of Lavender (Lavandula angustifolia L.) Essential oils extracted by supercritical CO2, hexane and hydrodistillation, Food Bioprocess Technol. 6 (2013) 3481–3489. https://doi.org/10.1007/s11947-012-1026-z
[108] P. Costa, C. Grosso, S. Gonçalves, P.B. Andrade, P. Valentão, M. Gabriela Bernardo-Gil, A. Romano, Supercritical fluid extraction and hydrodistillation for the recovery of bioactive compounds from Lavandula viridis L’Hér, Food Chem. 135 (2012) 112–121. https://doi.org/10.1016/j.foodchem.2012.04.108
[109] N. Bousbia, M. Abert Vian, M.A. Ferhat, E. Petitcolas, B.Y. Meklati, F. Chemat, Comparison of two isolation methods for essential oil from rosemary leaves: Hydrodistillation and microwave hydrodiffusion and gravity, Food Chem. 114 (2009) 355–362. https://doi.org/10.1016/j.foodchem.2008.09.106
[110] M.C. Mesomo, M.L. Corazza, P.M. Ndiaye, O.R. Dalla Santa, L. Cardozo, A.D.P. Scheer, Supercritical CO2 extracts and essential oil of ginger (Zingiber officinale R.): Chemical composition and antibacterial activity, J. Supercrit. Fluids, 80 (2013) 44–49. https://doi.org/10.1016/j.supflu.2013.03.031
[111] H. Bagheri, M.Y. Bin Abdul Manap, Z. Solati, Antioxidant activity of Piper nigrum L. essential oil extracted by supercritical CO2 extraction and hydro-distillation, Talanta, 121 (2014) 220–228. https://doi.org/10.1016/j.talanta.2014.01.007
[112] M. Khajeh, Y. Yamini, S. Shariati, Comparison of essential oils compositions of Nepeta persica obtained by supercritical carbon dioxide extraction and steam distillation methods, Food Bioprod. Process. 88 (2010) 227–232. https://doi.org/10.1016/j.fbp.2008.11.003
[113] E. Ghasemi, F. Raofie, N.M. Najafi, Application of response surface methodology and central composite design for the optimisation of supercritical fluid extraction of essential oils from Myrtus communis L. leaves, Food Chem. 126 (2011) 1449–1453. https://doi.org/10.1016/j.foodchem.2010.11.135
[114] F. Menichini, R. Tundis, M. Bonesi, B. de Cindio, M.R. Loizzo, F. Conforti, G.A. Statti, R. Menabeni, R. Bettini, F. Menichini, Chemical composition and bioactivity of Citrus medica L. cv. Diamante essential oil obtained by hydrodistillation, cold-pressing and supercritical carbon dioxide extraction, Nat. Prod. Res. 25 (2011) 789–799. https://doi.org/10.1080/14786410902900085
[115] J. Ivanović, D. Mišić, M. Ristić, O. Pešić, I. Žižović, Supercritical CO2extract and essential oil of bay (Laurus nobilis L.) – Chemical composition and antibacterial activity, J. Serbian Chem. Soc. 75 (2010) 395–404. https://doi.org/10.2298/jsc090303003i
[116] H. Bendif, K. Adouni, M.D. Miara, R. Baranauskienė, P. Kraujalis, P.R. Venskutonis, S.M. Nabavi, F. Maggi, Essential oils (EOs), pressurized liquid extracts (PLE) and carbon dioxide supercritical fluid extracts (SFE-CO2) from Algerian Thymus munbyanus as valuable sources of antioxidants to be used on an industrial level, Food Chem. 260 (2018) 289–298. https://doi.org/10.1016/j.foodchem.2018.03.108