Flexibility in Metal-Organic Frameworks: A Fundamental Understanding

$20.00

Flexibility in Metal-Organic Frameworks: A Fundamental Understanding

Christia Jabbour, Noor Aljammal, Tatjána Juzsakova, Francis Verpoort

Metal-organic frameworks (MOFs) had until recently the reputation of being one of the most critical porous materials. Their flexibility, however, has gained a lot of attention due to the wide selection of possible combinations between metal nods and/or ligands. Nonetheless, it is not always easy to identify the source of flexibility. This chapter focuses on the origin of flexibility, and the substantial geometrical changes that can occur due to external stimuli, such as temperature, pressure, light, gas or solvent adsorption. Flexibility control methods have also been discussed along with possible characterization techniques to help to identify the source of flexibility. Practical applications of flexible MOFs in gas separation and other processes are also discussed. In this respect, several prized examples covered by the literature are present to help in a comprehensive understanding in terms of design and structure tunability of flexible MOFs.

Keywords
Metal-Organic Frameworks, Flexibility, Mechanical Properties, Secondary Building Unit, Characterization

Published online 6/30/2019, 38 pages

Citation: Christia Jabbour, Noor Aljammal, Tatjána Juzsakova, Francis Verpoort, Flexibility in Metal-Organic Frameworks: A Fundamental Understanding, Materials Research Foundations, Vol. 53, pp 177-214, 2019

DOI: https://doi.org/10.21741/9781644900291-9

Part of the book on Metal-Organic Framework Composites

References
[1] S. Kitagawa, M. Kondo, Functional micropore chemistry of Crystalline metal complex-assembled compounds, Bull. Chem. Soc. Jpn. 71 (1998) 1739.
[2] G. Férey, C. Serre, Large breathing effects in three-dimensional porous hybrid matter: Facts, analyses, rules and consequences, Chem. Soc. Rev. 38 (2009) 1380–1399.
[3] M. O’keeffe, M.A. Peskov, S.J. Ramsden, O.M. Yaghi, The reticular chemistry structure resource (RCSR) database of, and symbols for, crystal nets, Acc. Chem. Res. 41 (2008) 1782–1789.
[4] D.J. Tranchemontagne, Z. Ni, M. O’Keeffe, O.M. Yaghi, Reticular chemistry of metal-organic polyhedra, Angew. Chemie – Int. Ed. 47 (2008) 5136–5147.
[5] J.J. Perry VI, J.A. Perman, M.J. Zaworotko, Design and synthesis of metal-organic frameworks using metal-organic polyhedra as supermolecular building blocks, Chem. Soc. Rev. 38 (2009) 1400–1417.
[6] D.J. Tranchemontagne, J.L. Mendoza-Cortés, M. O’Keeffe, O.M. Yaghi, Secondary building units, nets and bonding in the chemistry of metal-organic frameworks, Chem. Soc. Rev. 38 (2009) 1257–1283.
[7] Z.-J. Lin, Jian Lü, M.H. And, R. Cao, Metal-organic frameworks based on flexible ligands (FL- MOFs): Structures and applications, Int. J. Pharma Bio Sci. 3 (2012) P59–P65.
[8] M. O’Keeffe, O.M. Yaghi, Deconstructing the crystal structures of metal organic frameworks, Chem. Rev. 112 (2012) 675–702.
[9] N. Stock, S. Biswas, Synthesis of metal-organic frameworks (MOFs): Routes to various MOF topologies, morphologies, and composites, Chem. Rev. (2012) 933–969.
[10] D. Banerjee, J.B. Parise, Recent advances in s-block metal carboxylate networks, Cryst. Growth Des. 11 (2011) 4704–4720.
[11] A.M. Plonka, D. Banerjee, J.B. Parise, Effect of ligand structural isomerism in formation of calcium coordination networks, Cryst. Growth Des. 12 (2012) 2460–2467.
[12] M. Ahmad, M.K. Sharma, R. Das, P. Poddar, P.K. Bharadwaj, Syntheses, crystal structures, and magnetic properties of metal-organic hybrid materials of Co(II) using flexible and rigid nitrogen-based ditopic ligands as spacers, Cryst. Growth Des. 12 (2012) 1571–1578.
[13] O.M. Yaghi, H. Li, C. Davis, D. Richardson, T.L. Groy, Synthetic strategies, structure patterns, and emerging properties in the chemistry of modular porous solids, Acc. Chem. Res. 31 (1998) 474–484.
[14] M. Eddaoudi, J. Kim, N. Rosi, D. Vodak, J. Wachter, M. O’Keeffe, O.M. Yaghi, Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage, Science 80. 295 (2002) 469–472.
[15] G. Wang, K. Leus, S. Couck, P. Tack, H. Depauw, Y.Y. Liu, L. Vincze, J.F.M. Denayer, P. Van Der Voort, Enhanced gas sorption and breathing properties of the new sulfone functionalized COMOC-2 metal organic framework, Dalt. Trans. 45 (2016) 9485–9491.
[16] J. Wieme, L. Vanduyfhuys, S.M.J. Rogge, M. Waroquier, V. Van Speybroeck, Exploring the flexibility of MIL-47(V)-type materials using force field molecular dynamics simulations, J. Phys. Chem. C. 120 (2016) 14934–14947.
[17] T. Lescouet, E. Kockrick, M. Pera-titus, S. Aguado, D. Farrusseng, Homogeneity of flexible metal – organic frameworks containing mixed linkers, J. Mater. Chem. (2012) 10287–10293.
[18] P.D.C. Dietzel, R. Blom, H. Fjellvåg, Base-induced formation of two magnesium metal-organic framework compounds with a bifunctional tetratopic ligand, Eur. J. Inorg. Chem. (2008) 3624–3632.
[19] J. Seo, R. Matsuda, H. Sakamoto, C. Bonneau, S. Kitagawa, A pillared-layer coordination polymer with a rotatable pillar acting as a molecular gate for guest molecules, J. Am. Chem. Soc. 131 (2009) 12792–12800.
[20] S. Henke, A. Schneemann, A. Wu, R.A. Fischer, Directing the breathing behavior of pillared-layered metal−organic frameworks via a systematic library of functionalized linkers bearing flexible substituents, J. Am. Chem. Soc. 134 (2012) 9464–9474.
[21] S. Biswas, T. Ahnfeldt, N. Stock, New functionalized flexible Al-MIL-53-X (X= -Cl, -Br, -CH3,-NO2,-(OH)2) solids: syntheses, characterization, sorption, and breathing behavior, Inorg. Chem. 50 (2011) 9518–9526.
[22] P. Müller, F. Wisser, V. V Bon, R. Grünker, I. Senkovska, S. Kaskel, Post-synthetic paddle-wheel crosslinking and functionalization of 1,3-phenylenebis(azanetriyl)tetrabenzoate based MOFs, Chem. Mater. 27 (2015) 2460–2467.
[23] L. Pan, T. Frydel, M.B. Sander, X. Huang, J. Li, The effect of pH on the dimensionality of coordination polymers, Inorg. Chem. 40 (2001) 1271–1283.
[24] C. Serre, C. Mellot-Draznieks, S. Surblé, N. Audebrand, Y. Filinchuk, G. Férey, Role of solvent-host interactions that lead to very large swelling of hybrid frameworks, Science 80. 315 (2007) 1828–1831.
[25] P. Horcajada, F. Salles, S. Wuttke, T. Devic, D. Heurtaux, G. Maurin, A. Vimont, M. Daturi, O. David, E. Magnier, N. Stock, Y. Filinchuk, D. Popov, C. Riekel, G. Férey, C. Serre, How linker’s modification controls swelling properties of highly flexible iron(III) dicarboxylates MIL-88, J. Am. Chem. Soc. 133 (2011) 17839–17847.
[26] T. Ahnfeldt, D. Gunzelmann, T. Loiseau, D. Hirsemann, J. Senker, G. Férey, N. Stock, Synthesis and modification of a functionalized 3D open-framework structure with MIL-53 topology, Inorg. Chem. 48 (2009) 3057–3064.
[27] H. Deng, C.J. Doonan, H. Furukawa, R.B. Ferreira, J. Towne, C.B. Knobler, B. Wang, O.M. Yaghi, Multiple functional groups of varying ratios in metal-organic frameworks, Science 80. 327 (2010) 846–850.
[28] S. Sen, S. Neogi, A. Aijaz, Q. Xu, P.K. Bharadwaj, Structural variation in Zn(ii) coordination polymers built with a semi-rigid tetracarboxylate and different pyridine linkers: Synthesis and selective CO2 adsorption studies, Dalt. Trans. 43 (2014) 6100–6107.
[29] C. Xu, L. Li, Y. Wang, Q. Guo, X. Wang, H. Hou, Y. Fan, Three-dimensional Cd(II) coordination polymers based on semirigid bis(methylbenzimidazole) and aromatic polycarboxylates: Syntheses, topological structures and photoluminescent properties, Cryst. Growth Des. 11 (2011) 4667–4675.
[30] A.K. Gupta, K. Tomar, P.K. Bharadwaj, Structural diversity of Zn(II) based coordination polymers constructed from a flexible carboxylate linker and pyridyl co-linkers: Fluorescence sensing of nitroaromatics, New J. Chem. 41 (2017) 14505–14515.
[31] X.N. Hua, L. Qin, X.Z. Yan, L. Yu, Y.X. Xie, L. Han, Conformational diversity of flexible ligand in metal-organic frameworks controlled by size-matching mixed ligands, J. Solid State Chem. 232 (2015) 91–95.
[32] J. Ple´vert, T.M. Gentz, A. Laine, H. Li, V.G. Young, O.M. Yaghi, M. O’Keeffe, A Flexible germanate structure containing 24-ring channels and with very low framework density, J. Am. Chem. Soc. 123 (2001) 12706–12707.
[33] D.C.S. Souza, V. Pralong, A.J. Jacobson, L.F. Nazar, A reversible solid-state crystalline transformation in a metal phosphide induced by redox chemistry, Science 80. 296 (2002) 2012–2015.
[34] T.G. Amos, A.W. Sleight, Negative thermal expansion in orthorhombic NbOPO4, J. Solid State Chem. 160 (2001) 230–238.
[35] T. Takaishi, K. Tsutsumi, K. Chubachi, A. Matsumoto, Adsorption induced phase transition of ZSM-5 by p-xylene, J. Chem. Soc. – Faraday Trans. 94 (1998) 601–608.
[36] Q. Chen, Z. Chang, W.C. Song, H. Song, H. Bin Song, T.L. Hu, X.H. Bu, A controllable gate effect in cobalt(II) organic frameworks by reversible structure transformations, Angew. Chemie – Int. Ed. 52 (2013) 11550–11553.
[37] J. Tian, L. V. Saraf, B. Schwenzer, S.M. Taylor, E.K. Brechin, J. Liu, S.J. Dalgarno, P.K. Thallapally, Selective metal cation capture by soft anionic metal-organic frameworks via drastic single-crystal-to-single-crystal transformations, J. Am. Chem. Soc. 134 (2012) 9581–9584.
[38] J. Seo, C. Bonneau, R. Matsuda, M. Takata, S. Kitagawa, Soft secondary building unit: Dynamic bond rearrangement on multinuclear core of porous coordination polymers in gas media, J. Am. Chem. Soc. 133 (2011) 9005–9013.
[39] A. Schneemann, V. Bon, I. Schwedler, I. Senkovska, S. Kaskel, R.A. Fischer, Flexible metal-organic frameworks, Chem. Soc. Rev. 43 (2014) 6062–6096.
[40] F. Millange, C. Serre, G. Férey, Synthesis, structure determination and properties of MIL-53as and MIL-53ht: the first CrIII hybrid inorganic–organic microporous solids: CrIII(OH)·{O2C–C6H4–CO2}·{HO2C–C6H4–CO2H}x, Chem. Commun. (2002) 822–823.
[41] J.P.S. Mowat, V.R. Seymour, J.M. Griffin, S.P. Thompson, A.M.Z. Slawin, D. Fairen-Jimenez, T. Düren, S.E. Ashbrook, P.A. Wright, A novel structural form of MIL-53 observed for the scandium analogue and its response to temperature variation and CO2 adsorption, Dalt. Trans. 41 (2012) 3937–3941.
[42] E. V. Anokhina, M. Vougo-Zanda, X. Wang, A.J. Jacobson, In(OH)BDC·0.75BDCH2 (BDC = benzenedicarboxylate), a hybrid inorganic-organic vernier structure, J. Am. Chem. Soc. 127 (2005) 15000–15001.
[43] A. Boutin, M.A. Springuel-Huet, A. Nossov, A. Gédéon, T. Loiseau, C. Volkringer, G. Férey, F.X. Coudert, A.H. Fuchs, Breathing transitions in MIL-53(A1) metal-organic framework upon Xenon adsorption, Angew. Chemie – Int. Ed. 48 (2009) 8314–8317.
[44] X. Qian, B. Yadian, R. Wu, Y. Long, K. Zhou, B. Zhu, Y. Huang, Structure stability of metal-organic framework MIL-53 (Al) in aqueous solutions, Int. J. Hydrogen Energy. 38 (2013) 16710–16715.
[45] F. Millange, N. Guillou, R.I. Walton, J.M. Grenèche, I. Margiolaki, G. Férey, Effect of the nature of the metal on the breathing steps in MOFs with dynamic frameworks, Chem. Commun. (2008) 4732–4734.
[46] I. Beurroies, M. Boulhout, P.L. Llewellyn, B. Kuchta, G. Férey, C. Serre, R. Denoyel, Using pressure to provoke the structural transition of metal-organic frameworks, Angew. Chemie – Int. Ed. 49 (2010) 7526–7529.
[47] P.G. Yot, Q. Ma, J. Haines, Q. Yang, A. Ghoufi, T. Devic, C. Serre, V. Dmitriev, G. Férey, C. Zhong, G. Maurin, Large breathing of the MOF MIL-47(VIV) under mechanical pressure: A joint experimental-modelling exploration, Chem. Sci. 3 (2012) 1100–1104.
[48] S. Kitagawa, R. Kitaura, S. Noro, Functional hybrid porous coordination polymers, Angew. Chem. Int. Ed. 43 (2004) 2334–2375.
[49] M.D. Allendorf, R. Medishetty, R.A. Fischer, Guest molecules as a design element for metal-organic frameworks, MRS Bull. 41 (2016) 865–869.
[50] E.C. Spencer, M.S.R.N. Kiran, W. Li, U. Ramamurty, N.L. Ross, A.K. Cheetham, Pressure-induced bond rearrangement and reversible phase transformation in a metal-organic framework, Angew. Chemie – Int. Ed. 53 (2014) 5583–5586.
[51] K.J. Gagnon, C.M. Beavers, A. Clearfield, MOFs under pressure: The reversible compression of a single crystal, J. Am. Chem. Soc. 135 (2013) 1252–1255.
[52] A. Clearfield, Flexible MOFs under stress: Pressure and temperature, Dalt. Trans. 45 (2016) 4100–4112.
[53] C.A. Fernandez, P.K. Thallapally, B.P. McGrail, Insights into the temperature-dependent “breathing” of a flexible fluorinated metal-organic framework, ChemPhysChem. 13 (2012) 3275–3281.
[54] J.P. Zhang, X.M. Chen, Optimized acetylene/carbon dioxide sorption in a dynamic porous crystal, J. Am. Chem. Soc. 131 (2009) 5516–5521.
[55] N. Yanai, T. Uemura, M. Inoue, R. Matsuda, T. Fukushima, M. Tsujimoto, S. Isoda, S. Kitagawa, Guest-to-host transmission of structural changes for stimuli-responsive adsorption property, J. Am. Chem. Soc. 134 (2012) 4501–4504.
[56] F. Luo, C. Bin Fan, M.B. Luo, X.L. Wu, Y. Zhu, S.Z. Pu, W.Y. Xu, G.C. Guo, Photoswitching CO2 capture and release in a photochromic diarylethene metal-organic framework, Angew. Chemie – Int. Ed. 53 (2014) 9298–9301.
[57] J. Park, D. Yuan, K.T. Pham, J.-R. Li, and H.-C.Z. Andrey Yakovenko, Reversible alteration of CO2 adsorption upon photochemical or thermal treatment in a metal−organic framework, J. Am. Chem.Soc. 134 (2012) 99–10212.
[58] S. Kaskel, The Chemistry of Metal–Organic Frameworks, 2007.
[59] P. Kanoo, R. Matsuda, M. Higuchi, S. Kitagawa, T.K. Maji, New interpenetrated copper coordination polymer frameworks having porous properties, Chem. Mater. 21 (2009) 5860–5866.
[60] T.K. Maji, R. Matsuda, S. Kitagawa, A flexible interpenetrating coordination framework with a bimodal porous functionality, Nat. Mater. 6 (2007) 142–148.
[61] F.X. Coudert, A. Boutin, M. Jeffroy, C. Mellot-Draznieks, A.H. Fuchs, Thermodynamic methods and models to study flexible metal-organic frameworks, ChemPhysChem. 12 (2011) 247–258.
[62] C.R. Murdock, B.C. Hughes, Z. Lu, D.M. Jenkins, Approaches for synthesizing breathing MOFs by exploiting dimensional rigidity, Coord. Chem. Rev. 258–259 (2014) 119–136.
[63] Y.-T.L. Heng Song, Chao Jing, Wei Ma, Tao Xie, Reversible photoisomerization of azobenzene molecules on single gold nanoparticle surface, Chem. Commun. 52 (2016) 2984–2987.
[64] S. Kitagawa, K. Uemura, Dynamic porous properties of coordination polymers inspired by hydrogen bonds, Chem. Soc. Rev. 34 (2005) 109–119.
[65] R. Kitaura, S. Kitagawa, Y. Kubota, T.C. Kobayashi, K. Kindo, Y. Mita, A. Matsuo, M. Kobayashi, H.C. Chang, T.C. Ozawa, M. Suzuki, M. Sakata, M. Takata, Formation of a one-dimensional array of oxygen in a microporous metal-organic solid, Science 80. 298 (2002) 2358–2361.
[66] E.J. Carrington, C.A. McAnally, A.J. Fletcher, S.P. Thompson, M. Warren, L. Brammer, Solvent-switchable continuous-breathing behaviour in a diamondoid metal-organic framework and its influence on CO2 versus CH4 selectivity, Nat. Chem. 9 (2017) 882–889.
[67] D. Maspoch, D. Ruiz-Molina, K. Wurst, N. Domingo, M. Cavallini, F. Biscarini, J. Tejada, C. Rovira, J. Veciana, A nanoporous molecular magnet with reversible solvent-induced mechanical and magnetic properties, Nat. Mater. 2 (2003) 190–195.
[68] C. Serre, F. Millange, C. Thouvenot, M.N. S, G. Marsolier, D. Loue¨r, G. Fe´rey, Very large breathing effect in the first nanoporous chromium(III)-based solids: MIL-53 or CrIII(OH)‚{O2C-C6H4-CO2}‚{HO2C-C6H4-CO2H}x‚H2Oy, J. Am. Chem. Soc. 124 (2002) 13519–13526.
[69] M.P. Suh, Metal-Organic frameworks and porous coordination polymers: properties and applications, Bull. Jpn. Soc. Coord. Chem. 65 (2015).
[70] L. Carlucci, G. Ciani, M. Moret, D.M. Proserpio, S. Rizzato, Polymeric layers catenated by ribbons of rings in a three-dimensional self-assembled architecture: A nanoporous network with spongelike behavior, Angew. Chemie – Int. Ed. 39 (2000) 1506–1510.
[71] P.L. Llewellyn, S. Bourrelly, C. Serre, Y. Filinchuk, G. Férey, How hydration drastically improves adsorption selectivity for CO2 over CH4in the flexible chromium terephthalate MIL-53, Angew. Chemie – Int. Ed. 45 (2006) 7751–7754.
[72] C. Mellot-Draznieks, C. Serre, S. Surblé, N. Audebrand, G. Férey, Very large swelling in hybrid frameworks: A combined computational and powder diffraction study, J. Am. Chem. Soc. 127 (2005) 16273–16278.
[73] N.A. Ramsahye, T.K. Trung, L. Scott, F. Nouar, T. Devic, P. Horcajada, E. Magnier, O. David, C. Serre, P. Trens, Impact of the flexible character of MIL-88 iron(III) dicarboxylates on the adsorption of n-alkanes, Chem. Mater. 25 (2013) 479–488.
[74] Y. Yan, D.I. Kolokolov, I. Da Silva, A.G. Stepanov, A.J. Blake, A. Dailly, P. Manuel, C.C. Tang, S. Yang, M. Schröder, Porous Metal-Organic Polyhedral Frameworks with Optimal Molecular Dynamics and Pore Geometry for Methane Storage, J. Am. Chem. Soc. 139 (2017) 13349–13360.
[75] T. An, Y. Wang, J. Tang, Y. Wang, L. Zhang, G. Zheng, A flexible ligand-based wavy layered metal-organic framework for lithium-ion storage, J. Colloid Interface Sci. 445 (2015) 320–325.
[76] D. Fairen-Jimenez, S.A. Moggach, M.T. Wharmby, P.A. Wright, S. Parsons, T. Düren, Opening the gate: Framework flexibility in ZIF-8 explored by experiments and simulations, J. Am. Chem. Soc. 133 (2011) 8900–8902.
[77] M.E. Casco, Y.Q. Cheng, L.L. Daemen, D. Fairen-Jimenez, E. V. Ramos-Fernández, A.J. Ramirez-Cuesta, J. Silvestre-Albero, Gate-opening effect in ZIF-8: The first experimental proof using inelastic neutron scattering, Chem. Commun. 52 (2016) 3639–3642.
[78] M. Alaghemandi, R. Schmid, Model study of thermoresponsive behavior of metal-organic frameworks modulated by linker functionalization, J. Phys. Chem. C. 120 (2016) 6835–6841.
[79] S. Henke, A. Schneemann, R.A. Fischer, Massive anisotropic thermal expansion and thermo-responsive breathing in metal-organic frameworks modulated by linker functionalization, Adv. Funct. Mater. 23 (2013) 5990–5996.
[80] S.C. McKellar, S.A. Moggach, Structural studies of metal-organic frameworks under high pressure, Acta Crystallogr. Sect. B Struct. Sci. Cryst. Eng. Mater. 71 (2015) 587–607.
[81] A.J. Graham, A.M. Banu, T. Düren, A. Greenaway, S.C. McKellar, J.P.S. Mowat, K. Ward, P.A. Wright, S.A. Moggach, Stabilization of scandium terephthalate MOFs against reversible amorphization and structural phase transition by guest uptake at extreme pressure, J. Am. Chem. Soc. 136 (2014) 8606–8613.
[82] P. Zhao, T.D. Bennett, N.P.M. Casati, G.I. Lampronti, S.A. Moggach, S.A.T. Redfern, Pressure-induced oversaturation and phase transition in zeolitic imidazolate frameworks with remarkable mechanical stability, Dalt. Trans. 44 (2015) 4498–4503.
[83] S.C. McKellar, J. Sotelo, A. Greenaway, J.P.S. Mowat, O. Kvam, C.A. Morrison, P.A. Wright, S.A. Moggach, Pore Shape Modification of a Microporous Metal-Organic Framework Using High Pressure: Accessing a New Phase with Oversized Guest Molecules, Chem. Mater. 28 (2016) 466–473.
[84] S.K. Elsaidi, M.H. Mohamed, D. Banerjee, P.K. Thallapally, Flexibility in metal – organic frameworks : A fundamental understanding, Coord. Chem. Rev. 358 (2018) 125–152.
[85] K.W. Chapman, G.J. Halder, P.J. Chupas, Guest-dependent high pressure phenomena in a nanoporous metal-organic framework material, J. Am. Chem. Soc. 130 (2008) 10524–10526.
[86] W. Li, M.R. Probert, M. Kosa, T.D. Bennett, A. Thirumurugan, R.P. Burwood, M. Parinello, J.A.K. Howard, A.K. Cheetham, Negative linear compressibility of a metal-organic framework, J. Am. Chem. Soc. 134 (2012) 11940–11943.
[87] P. Serra-Crespo, A. Dikhtiarenko, E. Stavitski, J. Juan-Alcañiz, F. Kapteijn, F.X. Coudert, J. Gascon, Experimental evidence of negative linear compressibility in the MIL-53 metal-organic framework family, CrystEngComm. 17 (2015) 276–280.
[88] K.W. Chapman, G.J. Halder, G.J. Halder, P.J. Chupas, Pressure-Induced Amorphization and Porosity Modification in a Metal-Organic Framework, J. Am. Chem. Soc. 131 (2009) 17546–17547.
[89] S. Yuan, X. Sun, J. Pang, C. Lollar, J.S. Qin, Z. Perry, E. Joseph, X. Wang, Y. Fang, M. Bosch, D. Sun, D. Liu, H.C. Zhou, PCN-250 under pressure: sequential phase transformation and the implications for MOF densification, Joule. 1 (2017) 806–815.
[90] F.X. Coudert, Responsive metal-organic frameworks and framework materials: Under pressure, taking the heat, in the spotlight, with friends, Chem. Mater. 27 (2015) 1905–1916.
[91] R. Lyndon, K. Konstas, B.P. Ladewig, P.D. Southon, P.C.J. Kepert, M.R. Hill, Dynamic photo-switching in metal-organic frameworks as a route to low-energy carbon dioxide capture and release, Angew. Chemie – Int. Ed. 52 (2013) 3695–3698.
[92] A. Modrow, D. Zargarani, R. Herges, N. Stock, The first porous MOF with photoswitchable linker molecules, Dalt. Trans. 40 (2011) 4217–4222.
[93] D. Hermann, H. Emerich, R. Lepski, D. Schaniel, U. Ruschewitz, Metal-organic frameworks as hosts for photochromic guest molecules, Inorg. Chem. 52 (2013) 2744–2749.
[94] A. Modrow, D. Zargarani, R. Herges, N. Stock, Introducing a photo-switchable azo-functionality inside Cr-MIL-101-NH2 by covalent post-synthetic modification, Dalt. Trans. 41 (2012) 8690–8696.
[95] S. Bernt, M. Feyand, A. Modrow, J. Wack, J. Senker, N. Stock, A mixed-linker ZIF containing a photoswitchable phenylazo group, Eur. J. Inorg. Chem. (2011) 5378–5383.
[96] R.D. Mukhopadhyay, V.K. Praveen, A. Ajayaghosh, Photoresponsive metal-organic materials: Exploiting the azobenzene switch, Mater. Horizons. 1 (2014) 572–576.
[97] Y. Zou, M. Park, S. Hong, M.S. Lah, A designed metal-organic framework based on a metal-organic polyhedron, Chem. Commun. (2008) 2340–2342.
[98] Y.M. Lu, Y.Q. Lan, Y.H. Xu, Z.M. Su, S.L. Li, H.Y. Zang, G.J. Xu, Interpenetrating metal-organic frameworks formed by self-assembly of tetrahedral and octahedral building blocks, J. Solid State Chem. 182 (2009) 3105–3112.
[99] F. Salles, G. Maurin, C. Serre, P.L. Llewellyn, C. Knöfel, H.J. Choi, Y. Filinchuk, L. Oliviero, A. Vimont, J.R. Long, G. Férey, Multistep N2 breathing in the metal-organic framework Co(1,4-benzenedipyrazolate), J. Am. Chem. Soc. 132 (2010) 13782–13788.
[100] P. Deria, W. Bury, J.T. Hupp, O.K. Farha, Versatile functionalization of the NU-1000 platform by solvent-assisted ligand incorporation, Chem. Commun. 50 (2014) 1965–1968.
[101] M. Rimoldi, A.J. Howarth, M.R. Destefano, L. Lin, S. Goswami, P. Li, J.T. Hupp, O.K. Farha, Catalytic Zirconium/Hafnium-Based Metal-Organic Frameworks, ACS Catal. 7 (2017) 997–1014.
[102] I. Hod, W. Bury, D.M. Gardner, P. Deria, V. Roznyatovskiy, M.R. Wasielewski, O.K. Farha, J.T. Hupp, Bias-switchable permselectivity and redox catalytic activity of a ferrocene-functionalized, thin-film metal−organic framework compound, J. Phys. Chem. Lett. 6 (2015) 586–591.
[103] P. Deria, Y.G. Chung, R.Q. Snurr, J.T. Hupp, O.K. Farha, Water stabilization of Zr6-based metal–organic frameworks via solvent-assisted ligand incorporation, Chem. Sci. 6 (2015) 5172–5176.
[104] P. Deria, W. Bury, I. Hod, C. Kung, O. Karagiaridi, J.T. Hupp, O.K. Farha, MOF functionalization via solvent-assisted ligand incorporation: phosphonates vs carboxylates, Inorg. Chem. 54 (2015) 2185–2198.
[105] V. Bon, N. Kavoosi, I. Senkovska, P. Müller, J. Schaber, D. Wallacher, D.M. Többens, U. Mueller, S. Kaskel, Tuning the fl exibility in MOFs by SBU, Dalt. Trans. 45 (2016) 4407–4415.
[106] M. Handke, H. Weber, M. Lange, J. Mo, J. Lincke, R. Gla, R. Staudt, H. Krautscheid, Network flexibility: Control of gate opening in an isostructural series of Ag-MOFs by linker substitution, Inorg. Chem. 53 (2014) 7599–7607.
[107] M. Taddei, F. Costantino, A. Ienco, A. Comotti, P. V Dau, S.M. Cohen, Synthesis, breathing, and gas sorption study of the first isoreticular mixed-linker phosphonate based metal–organic frameworks, Chem. Commun. 49 (2013) 1315–1317.
[108] S. Surble, C. Serre, C. Mellot-draznieks, A new isoreticular class of metal-organic-frameworks with the MIL-88 topology, Chem. Commun. (2006) 284–286.
[109] C. Serre, F. Millange, S. Surble, G. Ferey, A Route to the synthesis of trivalent transition-metal porous carboxylates with trimeric secondary building units, Communication. 43 (2004) 6285–6289.
[110] T. Devic, P. Horcajada, C. Serre, F. Salles, G. Maurin, D. Heurtaux, G. Clet, A. Vimont, J. Grene, B. Le Ouay, F. Moreau, E. Magnier, Y. Filinchuk, J. Lavalley, M. Daturi, I. Charles, G. Montpellier, Functionalization in flexible porous Solids : Effects on the Pore Opening and the Host – Guest Interactions, J. Am. Chem. Soc. (2010) 1127–1136.
[111] C. Serre, F. Millange, T. Devic, N. Audebrand, W. Van Beek, Synthesis and structure determination of new open-framework chromium carboxylate MIL-105 or Cr (OH).{O2C–C6(CH3)4–CO2}.nH2O, Mater. Res. Bull. 41 (2006) 1550–1557.
[112] L. Hamon, P.L. Llewellyn, T. Devic, A. Ghoufi, G. Clet, V. Guillerm, G.D. Pirngruber, G. Maurin, C. Serre, G. Driver, W. Van Beek, E. Jolimaı, A. Vimont, M. Daturi, S. Je, A.A. V Orientale, Co-adsorption and separation of CO2 – CH4 mixtures in the highly flexible MIL-53(Cr) MOF, JACS. 53 (2009) 17490–17499.
[113] C. Mellot-draznieks, C. Serre, S. Surble, N. Audebrand, D.V.S.Y. V, A. V Etats-unis, R. Cedex, U.V. De France, B. V Saint-michel, Very large lwelling in hybrid frameworks : A combined computational and powder diffraction study, JACS. 127 (2005) 16273–16278.
[114] Z. Wang, S.M. Cohen, Postsynthetic modification of metal-organic frameworks, Chem. Soc. Rev. 38 (2009) 1315–1329.
[115] E. Haldoupis, T. Watanabe, S. Nair, D.S. Sholl, Quantifying large effects of framework flexibility on diffusion in MOFs : CH4 and CO2 in ZIF-8, ChemPhysChem. 13 (2012) 3449–3452.
[116] N.A. Ramsahye, G. Maurin, S. Bourrelly, P.L. Llewellyn, T. Loiseau, On the breathing effect of a metal – organic framework upon CO2 adsorption : Monte Carlo compared to microcalorimetry experiments, Chem. Commun. (2007) 3261–3263.
[117] S. Henke, R. Schmid, J. Grunwaldt, R.A. Fischer, Flexibility and sorption selectivity in rigid metal–organic frameworks, Chem. Eur. J. (2010) 14296–14306.
[118] M.-A. Springuel-Huet, A. Nossov, Z. Adem, F. Guenneau, C. Volkringer, T. Loiseau, A. Ge, P. Marie, Xe NMR study of the framework flexibility of the porous hybrid MIL-53(Al), JACS. 53 (2010) 11599–11607.
[119] T. Devic, F. Salles, S. Bourrelly, B. Moulin, G. Maurin, P. Horcajada, C. Serre, A. Vimont, J.-C. Lavalley, H. Leclerc, G. Clet, M. Daturi, P.L. Llewellyn, Y. Filinchuk, G. Ferey, Effect of the organic functionalization of flexible MOFs on the adsorption of, J. Mater. Chem. 22 (2012) 10266–10273.
[120] E. Quartapelle Procopio, T. Fukushima, E. Barea, J.A.R. Navarro, S. Horike, S. Kitagawa, A soft copper(II) porous coordination polymer with unprecedented aqua bridge and selective adsorption properties, Chem. -A Eur. J. 18 (2012) 13117–13125.
[121] S. Horike, Y. Inubushi, T. Hori, T. Fukushima, S. Kitagawa, A solid solution approach to 2D coordination polymers for CH4/CO2 and CH4/C2H6 gas separation: Equilibrium and kinetic studies, Chem. Sci. 3 (2012) 116–120.
[122] J. Kim, W.Y. Kim, W.S. Ahn, Amine-functionalized MIL-53(Al) for CO2/N2 separation: Effect of textural properties, Fuel. 102 (2012) 574–579.
[123] B. Chen, S. Xiang, G. Qian, Metal-organic frameworks with functional pores for recognition of small molecules, Acc. Chem. Res. 43 (2010) 1115–1124.
[124] R.K. Das, A. Aijaz, M.K. Sharma, P. Lama, P.K. Bharadwaj, Direct crystallographic observation of catalytic reactions inside the pores of a flexible coordination polymer, Chem. – A Eur. J. 18 (2012) 6866–6872.
[125] N. Klein, C. Herzog, M. Sabo, I. Senkovska, J. Getzschmann, S. Paasch, M.R. Lohe, E. Brunner, S. Kaskel, Monitoring adsorption-induced switching by 129Xe NMR spectroscopy in a new metal-organic framework Ni2(2,6-ndc)2(dabco), Phys. Chem. Chem. Phys. 12 (2010) 11778–11784.
[126] P. Horcajada, C. Serre, G. Maurin, N.A. Ramsahye, F. Balas, M. Vallet-Regí, M. Sebban, F. Taulelle, G. Férey, Flexible porous metal-organic frameworks for a controlled drug delivery, J. Am. Chem. Soc. 130 (2008) 6774–6780.