Metal-Organic-Framework (MOFs) and Environmental Application

$20.00

Metal-Organic-Framework (MOFs) and Environmental Application

Hasan Ay, Sümeyye Karakuş, Hakan Burhan, Anish Khan, Fatih Sen

Toxic anions and heavy metals are one of the most important issues of concern in the world because of their exposure to ionic contamination, which is very common, as well as their potential for the environment and human health. Until now, the applications of metal organic frameworks (MOFs) have been studied extensively in many different fields such as filtering, purification, detection and storage. However, for some contaminations (eg organic pollutants, heavy metals and hazardous chemicals), their use in the field of wastewater treatment (WWT) has not yet been fully assessed. In this chapter, we discussed the development and comparison of traditional materials based on metal organic frameworks based wastewater treatment techniques. The process of pollutants in water and the performance and details of MOFs in different treatment areas have been emphasized.
Keywords

Keywords
Metal-Organic Frameworks

Published online 6/30/2019, 32 pages

Citation: Hasan Ay, Sümeyye Karakuş, Hakan Burhan, Anish Khan, Fatih Sen, Metal-Organic-Framework (MOFs) and Environmental Application, Materials Research Foundations, Vol. 53, pp 73-104, 2019

DOI: https://doi.org/10.21741/9781644900291-4

Part of the book on Metal-Organic Framework Composites

References
[1] S. D. Richardson & T. A. Ternes, Water Analysis: Emerging Contaminants and Current Issues. Analytical Chemistry, 90 (2018) 398–428. https://doi.org/10.1021/acs.analchem.7b04577
[2] S. D. Richardson, Environmental Mass Spectrometry: Emerging Contaminants and Current Issues. Analytical Chemistry, 84 (2012) 747–778. https://doi.org/10.1021/ac202903d
[3] Y. Huang & A. A. Keller, Magnetic Nanoparticle Adsorbents for Emerging Organic Contaminants. ACS Sustainable Chemistry & Engineering, 1 (2013) 731–736. https://doi.org/10.1021/sc400047q
[4] M. Kuster, M. J. López de Alda, M. D. Hernando, M. Petrovic, J. Martín-Alonso, & D. Barceló, Analysis and occurrence of pharmaceuticals, estrogens, progestogens and polar pesticides in sewage treatment plant effluents, river water and drinking water in the Llobregat river basin (Barcelona, Spain). Journal of Hydrology, 358 (2008) 112–123. https://doi.org/10.1016/J.JHYDROL.2008.05.030
[5] N. Bolong, A. F. Ismail, M. R. Salim, & T. Matsuura, A review of the effects of emerging contaminants in wastewater and options for their removal. Desalination, 239 (2009) 229–246. https://doi.org/10.1016/J.DESAL.2008.03.020
[6] K. E. Murray, S. M. Thomas, & A. A. Bodour, Prioritizing research for trace pollutants and emerging contaminants in the freshwater environment. Environmental Pollution, 158 (2010) 3462–3471. https://doi.org/10.1016/J.ENVPOL.2010.08.009
[7] K. Ariga, S. Ishihara, H. Abe, M. Li, & J. P. Hill, Materials nanoarchitectonics for environmental remediation and sensing. J. Mater. Chem., 22 (2012) 2369–2377. https://doi.org/10.1039/C1JM14101E
[8] Y. Kosaki, H. Izawa, S. Ishihara, K. Kawakami, M. Sumita, Y. Tateyama, Q. Ji, V. Krishnan, S. Hishita, Y. Yamauchi, J. P. Hill, A. Vinu, S. Shiratori, & K. Ariga, Nanoporous Carbon Sensor with Cage-in-Fiber Structure: Highly Selective Aniline Adsorbent toward Cancer Risk Management. ACS Applied Materials & Interfaces, 5 (2013) 2930–2934. https://doi.org/10.1021/am400940q
[9] T. Mori, M. Akamatsu, K. Okamoto, M. Sumita, Y. Tateyama, H. Sakai, J. P. Hill, M. Abe, & K. Ariga, Micrometer-level naked-eye detection of caesium particulates in the solid state. Science and Technology of Advanced Materials, 14 (2013) 015002. https://doi.org/10.1088/1468-6996/14/1/015002
[10] C. Bao & C. Fang, Water Resources Flows Related to Urbanization in China: Challenges and Perspectives for Water Management and Urban Development. Water Resources Management, 26 (2012) 531–552. https://doi.org/10.1007/s11269-011-9930-y
[11] X. Zhang, C. Chen, P. Lin, A. Hou, Z. Niu, & J. Wang, Emergency Drinking Water Treatment during Source Water Pollution Accidents in China: Origin Analysis, Framework and Technologies †. Environmental Science & Technology, 45 (2011) 161–167. https://doi.org/10.1021/es101987e
[12] N. A. Khan, Z. Hasan, & S. H. Jhung, Adsorptive removal of hazardous materials using metal-organic frameworks (MOFs): A review. Journal of Hazardous Materials, 244–245 (2013) 444–456. https://doi.org/10.1016/J.JHAZMAT.2012.11.011
[13] I. Michael, L. Rizzo, C. S. McArdell, C. M. Manaia, C. Merlin, T. Schwartz, C. Dagot, & D. Fatta-Kassinos, Urban wastewater treatment plants as hotspots for the release of antibiotics in the environment: A review. Water Research, 47 (2013) 957–995. https://doi.org/10.1016/J.WATRES.2012.11.027
[14] A. Finizio, G. Azimonti, & S. Villa, Occurrence of pesticides in surface water bodies: a critical analysis of the Italian national pesticide survey programs. J. Environ. Monit., 13 (2011) 49–57. https://doi.org/10.1039/C0EM00192A
[15] V. K. Gupta & Suhas, Application of low-cost adsorbents for dye removal – A review. Journal of Environmental Management, 90 (2009) 2313–2342. https://doi.org/10.1016/J.JENVMAN.2008.11.017
[16] Y. Gong, X. Zhao, Z. Cai, S. E. O’Reilly, X. Hao, & D. Zhao, A review of oil, dispersed oil and sediment interactions in the aquatic environment: influence on the fate, transport and remediation of oil spills. Marine pollution bulletin, 79 (2014) 16–33. https://doi.org/10.1016/j.marpolbul.2013.12.024
[17] R. F. Johnson, T. G. Manjreker, & J. E. Halligan, Removal of oil from water surfaces by sorption on unstructured fibers. Environmental Science & Technology, 7 (1973) 439–443. https://doi.org/10.1021/es60077a003
[18] M. He, Y. Sun, X. Li, & Z. Yang, Distribution patterns of nitrobenzenes and polychlorinated biphenyls in water, suspended particulate matter and sediment from mid- and down-stream of the Yellow River (China). Chemosphere, 65 (2006) 365–74. https://doi.org/10.1016/j.chemosphere.2006.02.033
[19] M. Ahmaruzzaman, Adsorption of phenolic compounds on low-cost adsorbents: A review. Advances in Colloid and Interface Science, 143 (2008) 48–67. https://doi.org/10.1016/j.cis.2008.07.002
[20] B. Pawelec, R. M. Navarro, J. M. Campos-Martin, & J. L. G. Fierro, Retracted article: Towards near zero-sulfur liquid fuels: a perspective review. Catalysis Science & Technology, 1 (2011) 23. https://doi.org/10.1039/c0cy00049c
[21] R. . Colvile, E. . Hutchinson, J. . Mindell, & R. . Warren, The transport sector as a source of air pollution. Atmospheric Environment, 35 (2001) 1537–1565. https://doi.org/10.1016/S1352-2310(00)00551-3
[22] M. Hartmann, S. Kullmann, & H. Keller, Wastewater treatment with heterogeneous Fenton-type catalysts based on porous materials. Journal of Materials Chemistry, 20 (2010) 9002. https://doi.org/10.1039/c0jm00577k
[23] M. M. Khin, A. S. Nair, V. J. Babu, R. Murugan, & S. Ramakrishna, A review on nanomaterials for environmental remediation. Energy & Environmental Science, 5 (2012) 8075. https://doi.org/10.1039/c2ee21818f
[24] A. Walcarius & L. Mercier, Mesoporous organosilica adsorbents: nanoengineered materials for removal of organic and inorganic pollutants. Journal of Materials Chemistry, 20 (2010) 4478. https://doi.org/10.1039/b924316j
[25] R. T. Yang, Adsorbents : fundamentals and applications (Wiley-Interscience, 2003)
[26] J.-R. Li, R. J. Kuppler, & H.-C. Zhou, Selective gas adsorption and separation in metal–organic frameworks. Chemical Society Reviews, 38 (2009) 1477. https://doi.org/10.1039/b802426j
[27] B. Van de Voorde, B. Bueken, J. Denayer, & D. De Vos, Adsorptive separation on metal–organic frameworks in the liquid phase. Chem. Soc. Rev., 43 (2014) 5766–5788. https://doi.org/10.1039/C4CS00006D
[28] M. P. Suh, Y. E. Cheon, & E. Y. Lee, Syntheses and functions of porous metallosupramolecular networks. Coordination Chemistry Reviews, 252 (2008) 1007–1026. https://doi.org/10.1016/J.CCR.2008.01.032
[29] C. Moreno-Castilla, Adsorption of organic molecules from aqueous solutions on carbon materials. Carbon, 42 (2004) 83–94. https://doi.org/10.1016/J.CARBON.2003.09.022
[30] E. Haque, J. W. Jun, S. N. Talapaneni, A. Vinu, & S. H. Jhung, Superior adsorption capacity of mesoporous carbon nitride with basic CN framework for phenol. Journal of Materials Chemistry, 20 (2010) 10801. https://doi.org/10.1039/c0jm02974b
[31] Y. Wang, R. T. Yang, & J. M. Heinzel, Desulfurization of jet fuel by π-complexation adsorption with metal halides supported on MCM-41 and SBA-15 mesoporous materials. Chemical Engineering Science, 63 (2008) 356–365. https://doi.org/10.1016/J.CES.2007.09.002
[32] L. Zhang, W. Zhang, J. Shi, Z. Hua, Y. Li, & J. Yan, A new thioether functionalized organic–inorganic mesoporous composite as a highly selective and capacious Hg2+ adsorbentElectronic supplementary information (ESI) available: Figs. S1–S3. See http://www.rsc.org/suppdata/cc/b2/b210457a/. Chemical Communications, 0 (2003) 210–211. https://doi.org/10.1039/b210457a
[33] X. Wang, T. Sun, J. Yang, L. Zhao, & J. Jia, Low-temperature H2S removal from gas streams with SBA-15 supported ZnO nanoparticles. Chemical Engineering Journal, 142 (2008) 48–55. https://doi.org/10.1016/J.CEJ.2007.11.013
[34] A. Dąbrowski, P. Podkościelny, Z. Hubicki, & M. Barczak, Adsorption of phenolic compounds by activated carbon—a critical review. Chemosphere, 58 (2005) 1049–1070. https://doi.org/10.1016/J.CHEMOSPHERE.2004.09.067
[35] K. Kadirvelu, K. Thamaraiselvi, & C. Namasivayam, Removal of heavy metals from industrial wastewaters by adsorption onto activated carbon prepared from an agricultural solid waste. Bioresource Technology, 76 (2001) 63–65. https://doi.org/10.1016/S0960-8524(00)00072-9
[36] C. Y. Yin, M. K. Aroua, & W. M. A. W. Daud, Review of modifications of activated carbon for enhancing contaminant uptakes from aqueous solutions. Separation and Purification Technology, 52 (2007) 403–415. https://doi.org/10.1016/J.SEPPUR.2006.06.009
[37] †,‡ Anning Zhou, † and Xiaoliang Ma, & † Chunshan Song*, Liquid-Phase Adsorption of Multi-Ring Thiophenic Sulfur Compounds on Carbon Materials with Different Surface Properties. (2006). https://doi.org/10.1021/JP0550210
[38] E. Deliyanni, M. Seredych, & T. J. Bandosz, Interactions of 4,6-Dimethyldibenzothiophene with the Surface of Activated Carbons. Langmuir, 25 (2009) 9302–9312. https://doi.org/10.1021/la900854x
[39] J.-R. Li, Y. Ma, M. C. McCarthy, J. Sculley, J. Yu, H.-K. Jeong, P. B. Balbuena, & H.-C. Zhou, Carbon dioxide capture-related gas adsorption and separation in metal-organic frameworks. Coordination Chemistry Reviews, 255 (2011) 1791–1823. https://doi.org/10.1016/J.CCR.2011.02.012
[40] A. Samokhvalov & B. J. Tatarchuk, Review of Experimental Characterization of Active Sites and Determination of Molecular Mechanisms of Adsorption, Desorption and Regeneration of the Deep and Ultradeep Desulfurization Sorbents for Liquid Fuels. Catalysis Reviews, 52 (2010) 381–410. https://doi.org/10.1080/01614940.2010.498749
[41] H.-L. Jiang & Q. Xu, Porous metal–organic frameworks as platforms for functional applications. Chemical Communications, 47 (2011) 3351. https://doi.org/10.1039/c0cc05419d
[42] C.-Y. Huang, M. Song, Z.-Y. Gu, H.-F. Wang, & X.-P. Yan, Probing the Adsorption Characteristic of Metal–Organic Framework MIL-101 for Volatile Organic Compounds by Quartz Crystal Microbalance. Environmental Science & Technology, 45 (2011) 4490–4496. https://doi.org/10.1021/es200256q
[43] J. Liu, P. K. Thallapally, B. P. McGrail, D. R. Brown, & J. Liu, Progress in adsorption-based CO 2 capture by metal–organic frameworks. Chem. Soc. Rev., 41 (2012) 2308–2322. https://doi.org/10.1039/C1CS15221A
[44] G. Crini, Non-conventional low-cost adsorbents for dye removal: A review. Bioresource Technology, 97 (2006) 1061–1085. https://doi.org/10.1016/J.BIORTECH.2005.05.001
[45] S. Velu, and Xiaoliang Ma, & C. Song*, Selective Adsorption for Removing Sulfur from Jet Fuel over Zeolite-Based Adsorbents. (2003). https://doi.org/10.1021/IE020995P
[46] * Jarkko Helminen, and Joni Helenius, E. Paatero, & I. Turunen, Adsorption Equilibria of Ammonia Gas on Inorganic and Organic Sorbents at 298.15 K. (2001). https://doi.org/10.1021/JE000273+
[47] M. Seredych, E. Deliyanni, & T. J. Bandosz, Role of microporosity and surface chemistry in adsorption of 4,6-dimethyldibenzothiophene on polymer-derived activated carbons. Fuel, 89 (2010) 1499–1507. https://doi.org/10.1016/J.FUEL.2009.09.032
[48] C. O. A. and & †,‡ Teresa J. Bandosz*, Importance of Structural and Chemical Heterogeneity of Activated Carbon Surfaces for Adsorption of Dibenzothiophene. (2005). https://doi.org/10.1021/LA050772E
[49] M. Seredych & T. J. Bandosz, Removal of dibenzothiophenes from model diesel fuel on sulfur rich activated carbons. Applied Catalysis B: Environmental, 106 (2011) 133–141. https://doi.org/10.1016/J.APCATB.2011.05.016
[50] J. D. Evans, B. Garai, H. Reinsch, W. Li, S. Dissegna, V. Bon, I. Senkovska, R. A. Fischer, S. Kaskel, C. Janiak, N. Stock, & D. Volkmer, Metal–organic frameworks in Germany: From synthesis to function. Coordination Chemistry Reviews, 380 (2019) 378–418. https://doi.org/10.1016/j.ccr.2018.10.002
[51] Z. Zhou & M. Hartmann, Progress in enzyme immobilization in ordered mesoporous materials and related applications. Chemical Society Reviews, 42 (2013) 3894. https://doi.org/10.1039/c3cs60059a
[52] A. Vinu & K. Ariga, New Ideas for Mesoporous Materials. Advanced Porous Materials, 1 (2013) 63–71. https://doi.org/10.1166/apm.2013.1005
[53] J.-R. Li, J. Sculley, & H.-C. Zhou, Metal–Organic Frameworks for Separations. Chemical Reviews, 112 (2012) 869–932. https://doi.org/10.1021/cr200190s
[54] I. Ahmed & S. H. Jhung, Composites of metal–organic frameworks: Preparation and application in adsorption. Materials Today, 17 (2014) 136–146. https://doi.org/10.1016/J.MATTOD.2014.03.002
[55] N. A. Khan, Z. Hasan, & S. H. Jhung, Adsorption and Removal of Sulfur or Nitrogen-Containing Compounds with Metal-Organic Frameworks (MOFs). Advanced Porous Materials, 1 (2013) 91–102. https://doi.org/10.1166/apm.2013.1002
[56] Heavy Metals In The Environment – Bibudhendra Sarkar – Google Kitaplar. (n.d.). https://books.google.com.tr/books?hl=tr&lr=&id=OJboWGzbq1EC&oi=fnd&pg=PP1&ots=lRv1MU1-p2&sig=z_t1IzMYFyNnkB4ZA9fVe-0fQuE&redir_esc=y#v=onepage&q&f=false (accessed December 28, 2018)
[57] Toxicity and source of Pb, Cd, Hg, Cr, As, and Radionuclides in the Environment. (n.d.). https://www.researchgate.net/publication/291159112_Toxicity_and_source_of_Pb_Cd_Hg_Cr_As_and_Radionuclides_in_the_Environment (accessed December 28, 2018)
[58] † Mohamed Eddaoudi, † David B. Moler, † Hailian Li, † Banglin Chen, † Theresa M. Reineke, ‡ and Michael O’Keeffe, & † Omar M. Yaghi*, Modular Chemistry:  Secondary Building Units as a Basis for the Design of Highly Porous and Robust Metal−Organic Carboxylate Frameworks. (2001). https://doi.org/10.1021/AR000034B
[59] H. Furukawa, N. Ko, Y. B. Go, N. Aratani, S. B. Choi, E. Choi, A. O. Yazaydin, R. Q. Snurr, M. O’Keeffe, J. Kim, & O. M. Yaghi, Ultrahigh porosity in metal-organic frameworks. Science (New York, N.Y.), 329 (2010) 424–8. https://doi.org/10.1126/science.1192160
[60] * O. M. Yaghi, and Hailian Li, & T. L. Groy, Construction of Porous Solids from Hydrogen-Bonded Metal Complexes of 1,3,5-Benzenetricarboxylic Acid. (1996). https://doi.org/10.1021/JA960746Q
[61] E. E. Moushi, T. C. Stamatatos, W. Wernsdorfer, V. Nastopoulos, G. Christou, & A. J. Tasiopoulos, A Family of 3D Coordination Polymers Composed of Mn19 Magnetic Units. Angewandte Chemie International Edition, 45 (2006) 7722–7725. https://doi.org/10.1002/anie.200603498
[62] T. J. Prior & M. J. Rosseinsky, Crystal engineering of a 3-D coordination polymer from 2-D building blocks. Chemical Communications, 0 (2001) 495–496. https://doi.org/10.1039/b009455m
[63] M. E. Kosal, J.-H. Chou, S. R. Wilson, & K. S. Suslick, A functional zeolite analogue assembled from metalloporphyrins. Nature Materials, 1 (2002) 118–121. https://doi.org/10.1038/nmat730
[64] †,‡ Hitoshi Kumagai, § and Cameron J. Kepert, & † Mohamedally Kurmoo*, Construction of Hydrogen-Bonded and Coordination-Bonded Networks of Cobalt(II) with Pyromellitate:  Synthesis, Structures, and Magnetic Properties. (2002). https://doi.org/10.1021/IC020065Y
[65] G. Férey, Hybrid porous solids: past, present, future. Chem. Soc. Rev., 37 (2008) 191–214. https://doi.org/10.1039/B618320B
[66] P. Kumar, A. Deep, & K.-H. Kim, Metal organic frameworks for sensing applications. TrAC Trends in Analytical Chemistry, 73 (2015) 39–53. https://doi.org/10.1016/J.TRAC.2015.04.009
[67] K. K. Tanabe & S. M. Cohen, Postsynthetic modification of metal–organic frameworks—a progress report. Chem. Soc. Rev., 40 (2011) 498–519. https://doi.org/10.1039/C0CS00031K
[68] G. Férey, C. Mellot-Draznieks, C. Serre, F. Millange, J. Dutour, S. Surblé, I. Margiolaki, N. G. Berry, Y. Z. Khimyak, A. Y. Ganin, P. Wiper, J. B. Claridge, M. J. Rosseinsky, J. F. Stoddart, & O. M. Yaghi, A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science (New York, N.Y.), 309 (2005) 2040–2. https://doi.org/10.1126/science.1116275
[69] P. Kumar, K.-H. Kim, & A. Deep, Recent advancements in sensing techniques based on functional materials for organophosphate pesticides. Biosensors and Bioelectronics, 70 (2015) 469–481. https://doi.org/10.1016/J.BIOS.2015.03.066
[70] S. Horike, S. Shimomura, & S. Kitagawa, Soft porous crystals. Nature Chemistry, 1 (2009) 695–704. https://doi.org/10.1038/nchem.444
[71] D. Bradshaw, J. B. Claridge, E. J. Cussen, and T. J. Prior, & M. J. Rosseinsky*, Design, Chirality, and Flexibility in Nanoporous Molecule-Based Materials. (2005). https://doi.org/10.1021/AR0401606
[72] O. K. Farha & J. T. Hupp, Rational Design, Synthesis, Purification, and Activation of Metal−Organic Framework Materials. Accounts of Chemical Research, 43 (2010) 1166–1175. https://doi.org/10.1021/ar1000617
[73] J. M. Taylor, T. Komatsu, S. Dekura, K. Otsubo, M. Takata, & H. Kitagawa, The Role of a Three Dimensionally Ordered Defect Sublattice on the Acidity of a Sulfonated Metal–Organic Framework. Journal of the American Chemical Society, 137 (2015) 11498–11506. https://doi.org/10.1021/jacs.5b07267
[74] A. Douvali, A. C. Tsipis, S. V. Eliseeva, S. Petoud, G. S. Papaefstathiou, C. D. Malliakas, I. Papadas, G. S. Armatas, I. Margiolaki, M. G. Kanatzidis, T. Lazarides, & M. J. Manos, Turn-On Luminescence Sensing and Real-Time Detection of Traces of Water in Organic Solvents by a Flexible Metal-Organic Framework. Angewandte Chemie International Edition, 54 (2015) 1651–1656. https://doi.org/10.1002/anie.201410612
[75] K. K. Barnes, D. W. Kolpin, E. T. Furlong, S. D. Zaugg, M. T. Meyer, & L. B. Barber, A national reconnaissance of pharmaceuticals and other organic wastewater contaminants in the United States — I) Groundwater. Science of The Total Environment, 402 (2008) 192–200. https://doi.org/10.1016/J.SCITOTENV.2008.04.028
[76] V. K. Gupta, R. Jain, A. Mittal, T. A. Saleh, A. Nayak, S. Agarwal, & S. Sikarwar, Photo-catalytic degradation of toxic dye amaranth on TiO2/UV in aqueous suspensions. Materials Science and Engineering: C, 32 (2012) 12–17. https://doi.org/10.1016/J.MSEC.2011.08.018
[77] D. W. Kolpin, M. Skopec, M. T. Meyer, E. T. Furlong, & S. D. Zaugg, Urban contribution of pharmaceuticals and other organic wastewater contaminants to streams during differing flow conditions. Science of The Total Environment, 328 (2004) 119–130. https://doi.org/10.1016/J.SCITOTENV.2004.01.015
[78] M. J. M. Bueno, M. J. Gomez, S. Herrera, M. D. Hernando, A. Agüera, & A. R. Fernández-Alba, Occurrence and persistence of organic emerging contaminants and priority pollutants in five sewage treatment plants of Spain: Two years pilot survey monitoring. Environmental Pollution, 164 (2012) 267–273. https://doi.org/10.1016/J.ENVPOL.2012.01.038
[79] S. Khan, Q. Cao, Y. M. Zheng, Y. Z. Huang, & Y. G. Zhu, Health risks of heavy metals in contaminated soils and food crops irrigated with wastewater in Beijing, China. Environmental Pollution, 152 (2008) 686–692. https://doi.org/10.1016/J.ENVPOL.2007.06.056
[80] N. J. Ashbolt, Microbial contamination of drinking water and disease outcomes in developing regions. Toxicology, 198 (2004) 229–238. https://doi.org/10.1016/J.TOX.2004.01.030
[81] S. Naidoo, A. Olaniran, S. Naidoo, & A. O. Olaniran, Treated Wastewater Effluent as a Source of Microbial Pollution of Surface Water Resources. International Journal of Environmental Research and Public Health, 11 (2013) 249–270. https://doi.org/10.3390/ijerph110100249
[82] M. . Wong, Ecological restoration of mine degraded soils, with emphasis on metal contaminated soils. Chemosphere, 50 (2003) 775–780. https://doi.org/10.1016/S0045-6535(02)00232-1
[83] S. Liu, C. Gunawan, N. Barraud, S. A. Rice, E. J. Harry, & R. Amal, Understanding, Monitoring, and Controlling Biofilm Growth in Drinking Water Distribution Systems. Environmental Science & Technology, 50 (2016) 8954–8976. https://doi.org/10.1021/acs.est.6b00835
[84] H. R. Rogers, Sources, behaviour and fate of organic contaminants during sewage treatment and in sewage sludges. Science of The Total Environment, 185 (1996) 3–26. https://doi.org/10.1016/0048-9697(96)05039-5
[85] C. Hignite & D. L. Azarnoff, Drugs and drug metabolites as environmental contaminants: Chlorophenoxyisobutyrate and salicylic acid in sewage water effluent. Life Sciences, 20 (1977) 337–341. https://doi.org/10.1016/0024-3205(77)90329-0
[86] F. Mapanda, E. N. Mangwayana, J. Nyamangara, & K. E. Giller, The effect of long-term irrigation using wastewater on heavy metal contents of soils under vegetables in Harare, Zimbabwe. Agriculture, Ecosystems & Environment, 107 (2005) 151–165. https://doi.org/10.1016/J.AGEE.2004.11.005
[87] P. E. Stackelberg, E. T. Furlong, M. T. Meyer, S. D. Zaugg, A. K. Henderson, & D. B. Reissman, Persistence of pharmaceutical compounds and other organic wastewater contaminants in a conventional drinking-water-treatment plant. Science of The Total Environment, 329 (2004) 99–113. https://doi.org/10.1016/J.SCITOTENV.2004.03.015
[88] A. Leung, Z. W. Cai, & M. H. Wong, Environmental contamination from electronic waste recycling at Guiyu, southeast China. Journal of Material Cycles and Waste Management, 8 (2006) 21–33. https://doi.org/10.1007/s10163-005-0141-6
[89] T. Heberer, Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment: a review of recent research data. Toxicology Letters, 131 (2002) 5–17. https://doi.org/10.1016/S0378-4274(02)00041-3
[90] Scopus – Document details. (n.d.). https://www.scopus.com/record/display.uri?eid=2-s2.0-34848883573&origin=inward (accessed December 28, 2018)
[91] excelwater.com. (n.d.). http://www.excelwater.com/thp/filters/Water-Purification.htm (accessed December 28, 2018)
[92] Xiu-Sheng Miao, and Jian-Jun Yang, & C. D. Metcalfe*, Carbamazepine and Its Metabolites in Wastewater and in Biosolids in a Municipal Wastewater Treatment Plant. (2005). https://doi.org/10.1021/ES050261E
[93] Y. Zhang, S.-U. Geißen, & C. Gal, Carbamazepine and diclofenac: Removal in wastewater treatment plants and occurrence in water bodies. Chemosphere, 73 (2008) 1151–1161. https://doi.org/10.1016/J.CHEMOSPHERE.2008.07.086
[94] N. Nakada, T. Tanishima, H. Shinohara, K. Kiri, & H. Takada, Pharmaceutical chemicals and endocrine disrupters in municipal wastewater in Tokyo and their removal during activated sludge treatment. Water Research, 40 (2006) 3297–3303. https://doi.org/10.1016/J.WATRES.2006.06.039
[95] M. Petrović, S. Gonzalez, & D. Barceló, Analysis and removal of emerging contaminants in wastewater and drinking water. TrAC Trends in Analytical Chemistry, 22 (2003) 685–696. https://doi.org/10.1016/S0165-9936(03)01105-1
[96] K. V Gernaey, M. C. . van Loosdrecht, M. Henze, M. Lind, & S. B. Jørgensen, Activated sludge wastewater treatment plant modelling and simulation: state of the art. Environmental Modelling & Software, 19 (2004) 763–783. https://doi.org/10.1016/J.ENVSOFT.2003.03.005
[97] S. D. Kim, J. Cho, I. S. Kim, B. J. Vanderford, & S. A. Snyder, Occurrence and removal of pharmaceuticals and endocrine disruptors in South Korean surface, drinking, and waste waters. Water Research, 41 (2007) 1013–1021. https://doi.org/10.1016/J.WATRES.2006.06.034
[98] O. A. H. Jones, N. Voulvoulis, & J. N. Lester, The occurrence and removal of selected pharmaceutical compounds in a sewage treatment works utilising activated sludge treatment. Environmental Pollution, 145 (2007) 738–744. https://doi.org/10.1016/J.ENVPOL.2005.08.077
[99] Y. Luo, W. Guo, H. H. Ngo, L. D. Nghiem, F. I. Hai, J. Zhang, S. Liang, & X. C. Wang, A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Science of The Total Environment, 473–474 (2014) 619–641. https://doi.org/10.1016/J.SCITOTENV.2013.12.065
[100] S. Parsons, Advanced oxidation processes for water and wastewater treatment. (2004)
[101] E. M. Dias & C. Petit, Towards the use of metal–organic frameworks for water reuse: a review of the recent advances in the field of organic pollutants removal and degradation and the next steps in the field. Journal of Materials Chemistry A, 3 (2015) 22484–22506. https://doi.org/10.1039/C5TA05440K
[102] A. Oyelami, B. Elegbede, K. Semple, A. Oyelami, B. Elegbede, & K. Semple, Impact of Different Types of Activated Carbon on the Bioaccessibility of 14C-phenanthrene in Sterile and Non-Sterile Soils. Environments, 1 (2014) 137–156. https://doi.org/10.3390/environments1020137
[103] A. Da̧browski, Z. Hubicki, P. Podkościelny, & E. Robens, Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method. Chemosphere, 56 (2004) 91–106. https://doi.org/10.1016/J.CHEMOSPHERE.2004.03.006
[104] P. Kumar, A. Pournara, K.-H. Kim, V. Bansal, S. Rapti, & M. J. Manos, Metal-organic frameworks: Challenges and opportunities for ion-exchange/sorption applications. Progress in Materials Science, 86 (2017) 25–74. https://doi.org/10.1016/J.PMATSCI.2017.01.002
[105] A. U. Czaja, N. Trukhan, & U. Müller, Industrial applications of metal–organic frameworks. Chemical Society Reviews, 38 (2009) 1284. https://doi.org/10.1039/b804680h
[106] P. Kumar, K.-H. Kim, E. E. Kwon, & J. E. Szulejko, Metal–organic frameworks for the control and management of air quality: advances and future direction. Journal of Materials Chemistry A, 4 (2016) 345–361. https://doi.org/10.1039/C5TA07068F
[107] O. M. Yaghi & H. Li, Hydrothermal Synthesis of a Metal-Organic Framework Containing Large Rectangular Channels. Journal of the American Chemical Society, 117 (1995) 10401–10402. https://doi.org/10.1021/ja00146a033
[108] G. Férey, C. Mellot-Draznieks, C. Serre, F. Millange, J. Dutour, S. Surblé, I. Margiolaki, N. G. Berry, Y. Z. Khimyak, A. Y. Ganin, P. Wiper, J. B. Claridge, M. J. Rosseinsky, J. F. Stoddart, & O. M. Yaghi, A Chromium Terephthalate-Based Solid with Unusually Large Pore Volumes and Surface Area. Science, 309 (2013) 2040–2042. https://doi.org/10.1126/science.1116275
[109] Synthesis of Metal-Organic Frameworks (MOFs): routes to various MOF topologies. (n.d.). https://www.scopus.com/record/display.uri?eid=2-s2.0-84899527159&origin=inward (accessed December 28, 2018)
[110] D. Britt, D. Tranchemontagne, & O. M. Yaghi, Metal-organic frameworks with high capacity and selectivity for harmful gases. Proceedings of the National Academy of Sciences of the United States of America, 105 (2008) 11623–7. https://doi.org/10.1073/pnas.0804900105
[111] Z. Hu, B. J. Deibert, & J. Li, Luminescent metal–organic frameworks for chemical sensing and explosive detection. Chem. Soc. Rev., 43 (2014) 5815–5840. https://doi.org/10.1039/C4CS00010B
[112] N. A. Khan & S. H. Jhung, Scandium-Triflate/Metal–Organic Frameworks: Remarkable Adsorbents for Desulfurization and Denitrogenation. Inorganic Chemistry, 54 (2015) 11498–11504. https://doi.org/10.1021/acs.inorgchem.5b02118
[113] S. R. Caskey, A. G. Wong-Foy, & A. J. Matzger, Dramatic Tuning of Carbon Dioxide Uptake via Metal Substitution in a Coordination Polymer with Cylindrical Pores. Journal of the American Chemical Society, 130 (2008) 10870–10871. https://doi.org/10.1021/ja8036096
[114] L. Hamon, C. Serre, T. Devic, T. Loiseau, F. Millange, G. Férey, & G. De Weireld, Comparative Study of Hydrogen Sulfide Adsorption in the MIL-53(Al, Cr, Fe), MIL-47(V), MIL-100(Cr), and MIL-101(Cr) Metal−Organic Frameworks at Room Temperature. Journal of the American Chemical Society, 131 (2009) 8775–8777. https://doi.org/10.1021/ja901587t
[115] H. Furukawa, F. Gándara, Y.-B. Zhang, J. Jiang, W. L. Queen, M. R. Hudson, & O. M. Yaghi, Water Adsorption in Porous Metal–Organic Frameworks and Related Materials. Journal of the American Chemical Society, 136 (2014) 4369–4381. https://doi.org/10.1021/ja500330a
[116] B. Arstad, H. Fjellvåg, K. O. Kongshaug, O. Swang, & R. Blom, Amine functionalised metal organic frameworks (MOFs) as adsorbents for carbon dioxide. Adsorption, 14 (2008) 755–762. https://doi.org/10.1007/s10450-008-9137-6
[117] J. R. Karra & K. S. Walton, Effect of Open Metal Sites on Adsorption of Polar and Nonpolar Molecules in Metal−Organic Framework Cu-BTC. Langmuir, 24 (2008) 8620–8626. https://doi.org/10.1021/la800803w
[118] G. Blanco-Brieva, J. M. Campos-Martin, S. M. Al-Zahrani, & J. L. G. Fierro, Effectiveness of metal–organic frameworks for removal of refractory organo-sulfur compound present in liquid fuels. Fuel, 90 (2011) 190–197. https://doi.org/10.1016/J.FUEL.2010.08.008
[119] F. Glover & J.-K. Hao, The case for strategic oscillation. Annals of Operations Research, 183 (2011) 163–173. https://doi.org/10.1007/s10479-009-0597-1
[120] E. Haque, J. W. Jun, & S. H. Jhung, Adsorptive removal of methyl orange and methylene blue from aqueous solution with a metal-organic framework material, iron terephthalate (MOF-235). Journal of Hazardous Materials, 185 (2011) 507–511. https://doi.org/10.1016/J.JHAZMAT.2010.09.035
[121] L. Hamon, H. Leclerc, A. Ghoufi, L. Oliviero, A. Travert, J.-C. Lavalley, T. Devic, C. Serre, G. Férey, G. De Weireld, A. Vimont, & G. Maurin, Molecular Insight into the Adsorption of H 2 S in the Flexible MIL-53(Cr) and Rigid MIL-47(V) MOFs: Infrared Spectroscopy Combined to Molecular Simulations. The Journal of Physical Chemistry C, 115 (2011) 2047–2056. https://doi.org/10.1021/jp1092724
[122] S.-H. Huo & X.-P. Yan, Metal–organic framework MIL-100(Fe) for the adsorption of malachite green from aqueous solution. Journal of Materials Chemistry, 22 (2012) 7449. https://doi.org/10.1039/c2jm16513a
[123] N. A. Khan & S. H. Jhung, Remarkable Adsorption Capacity of CuCl2-Loaded Porous Vanadium Benzenedicarboxylate for Benzothiophene. Angewandte Chemie, 124 (2012) 1224–1227. https://doi.org/10.1002/ange.201105113
[124] M. R. Azhar, H. R. Abid, H. Sun, V. Periasamy, M. O. Tadé, & S. Wang, Excellent performance of copper based metal organic framework in adsorptive removal of toxic sulfonamide antibiotics from wastewater. Journal of Colloid and Interface Science, 478 (2016) 344–352. https://doi.org/10.1016/J.JCIS.2016.06.032
[125] B. Seoane, J. Coronas, I. Gascon, M. E. Benavides, O. Karvan, J. Caro, F. Kapteijn, & J. Gascon, Metal–organic framework based mixed matrix membranes: a solution for highly efficient CO 2 capture? Chemical Society Reviews, 44 (2015) 2421–2454. https://doi.org/10.1039/C4CS00437J
[126] N. L. Torad, M. Hu, S. Ishihara, H. Sukegawa, A. A. Belik, M. Imura, K. Ariga, Y. Sakka, & Y. Yamauchi, Direct Synthesis of MOF-Derived Nanoporous Carbon with Magnetic Co Nanoparticles toward Efficient Water Treatment. Small, 10 (2014) 2096–2107. https://doi.org/10.1002/smll.201302910
[127] N. Rangnekar, N. Mittal, B. Elyassi, J. Caro, & M. Tsapatsis, Zeolite membranes – a review and comparison with MOFs. Chemical Society Reviews, 44 (2015) 7128–7154. https://doi.org/10.1039/C5CS00292C
[128] C. Wang, X. Liu, N. Keser Demir, J. P. Chen, & K. Li, Applications of water stable metal–organic frameworks. Chemical Society Reviews, 45 (2016) 5107–5134. https://doi.org/10.1039/C6CS00362A
[129] D. F. Sava, T. J. Garino, & T. M. Nenoff, Iodine Confinement into Metal–Organic Frameworks (MOFs): Low-Temperature Sintering Glasses To Form Novel Glass Composite Material (GCM) Alternative Waste Forms. Industrial & Engineering Chemistry Research, 51 (2012) 614–620. https://doi.org/10.1021/ie200248g
[130] J. A. Prince, S. Bhuvana, V. Anbharasi, N. Ayyanar, K. V. K. Boodhoo, & G. Singh, Self-cleaning Metal Organic Framework (MOF) based ultra filtration membranes–a solution to bio-fouling in membrane separation processes. Scientific reports, 4 (2014) 6555. https://doi.org/10.1038/srep06555
[131] Y.-X. Tan, Y.-P. He, M. Wang, & J. Zhang, A water-stable zeolite-like metal–organic framework for selective separation of organic dyes. RSC Adv., 4 (2014) 1480–1483. https://doi.org/10.1039/C3RA41627E
[132] H. Wang, X. Yuan, Y. Wu, G. Zeng, H. Dong, X. Chen, L. Leng, Z. Wu, & L. Peng, In situ synthesis of In2S3@MIL-125(Ti) core–shell microparticle for the removal of tetracycline from wastewater by integrated adsorption and visible-light-driven photocatalysis. Applied Catalysis B: Environmental, 186 (2016) 19–29. https://doi.org/10.1016/J.APCATB.2015.12.041
[133] X.-J. Liu, Y.-H. Zhang, Z. Chang, A.-L. Li, D. Tian, Z.-Q. Yao, Y.-Y. Jia, & X.-H. Bu, A Water-Stable Metal–Organic Framework with a Double-Helical Structure for Fluorescent Sensing. Inorganic Chemistry, 55 (2016) 7326–7328. https://doi.org/10.1021/acs.inorgchem.6b00935
[134] S.-H. Huo, J. Yu, Y.-Y. Fu, & P.-X. Zhou, In situ hydrothermal growth of a dual-ligand metal–organic framework film on a stainless steel fiber for solid-phase microextraction of polycyclic aromatic hydrocarbons in environmental water samples. RSC Advances, 6 (2016) 14042–14048. https://doi.org/10.1039/C5RA26656D
[135] Y. Yu, X.-M. Zhang, J.-P. Ma, Q.-K. Liu, P. Wang, & Y.-B. Dong, Cu( i )-MOF: naked-eye colorimetric sensor for humidity and formaldehyde in single-crystal-to-single-crystal fashion. Chem. Commun., 50 (2014) 1444–1446. https://doi.org/10.1039/C3CC47723A
[136] Activated Carbon. Adsorbents Fundam. Appl. (Hoboken, NJ, USA: John Wiley & Sons, Inc.), pp. 79–130. https://doi.org/10.1002/047144409X.ch5
[137] J. Weitkamp, M. Schwark, & S. Ernst, Removal of thiophene impurities from benzene by selective adsorption in zeolite ZSM-5. Journal of the Chemical Society, Chemical Communications, 0 (1991) 1133. https://doi.org/10.1039/c39910001133
[138] K. A. Cychosz, A. G. Wong-Foy, & A. J. Matzger, Liquid Phase Adsorption by Microporous Coordination Polymers: Removal of Organosulfur Compounds. Journal of the American Chemical Society, 130 (2008) 6938–6939. https://doi.org/10.1021/ja802121u
[139] M. Zhang, M. Bosch, T. Gentle III, & H.-C. Zhou, Rational design of metal–organic frameworks with anticipated porosities and functionalities. CrystEngComm, 16 (2014) 4069–4083. https://doi.org/10.1039/C4CE00321G
[140] S. Rapti, A. Pournara, D. Sarma, I. T. Papadas, G. S. Armatas, A. C. Tsipis, T. Lazarides, M. G. Kanatzidis, & M. J. Manos, Selective capture of hexavalent chromium from an anion-exchange column of metal organic resin–alginic acid composite. Chemical Science, 7 (2016) 2427–2436. https://doi.org/10.1039/C5SC03732H
[141] A. D. Levine, G. Tchobanoglous, & T. Asano, Size distributions of particulate contaminants in wastewater and their impact on treatability. Water Research, 25 (1991) 911–922. https://doi.org/10.1016/0043-1354(91)90138-G
[142] Y. Peng, H. Huang, D. Liu, & C. Zhong, Radioactive Barium Ion Trap Based on Metal–Organic Framework for Efficient and Irreversible Removal of Barium from Nuclear Wastewater. ACS Applied Materials & Interfaces, 8 (2016) 8527–8535. https://doi.org/10.1021/acsami.6b00900
[143] Z. Hasan, E.-J. Choi, & S. H. Jhung, Adsorption of naproxen and clofibric acid over a metal–organic framework MIL-101 functionalized with acidic and basic groups. Chemical Engineering Journal, 219 (2013) 537–544. https://doi.org/10.1016/J.CEJ.2013.01.002
[144] K. Wang, C. Li, Y. Liang, T. Han, H. Huang, Q. Yang, D. Liu, & C. Zhong, Rational construction of defects in a metal–organic framework for highly efficient adsorption and separation of dyes. Chemical Engineering Journal, 289 (2016) 486–493. https://doi.org/10.1016/J.CEJ.2016.01.019
[145] X. Zhao, K. Wang, Z. Gao, H. Gao, Z. Xie, X. Du, & H. Huang, Reversing the Dye Adsorption and Separation Performance of Metal–Organic Frameworks via Introduction of −SO 3 H Groups. Industrial & Engineering Chemistry Research, 56 (2017) 4496–4501. https://doi.org/10.1021/acs.iecr.7b00128.