Polyoxometalate-Based Metal-Organic Framework Composites


Polyoxometalate-Based Metal-Organic Framework Composites

Yunpeng He, Shuijin Yang

A series of polyoxometalates(POMs)-based Metal-Organic Frameworks (MOFs) were synthesized through direct incorporation between POMs and MOFs. In these compounds, the catalytically active polyanions as noncoordinating guests in the metal-organic frameworks host matrix. To overcome the difficulties of lack of sufficient thermal and chemical stability,a lot of research was done to introduce POMs to different MOFs for constructing various POM supporting MOFs with desired properties. POM based MOFs as a new type of functional materials developed rapidly, and is used in electrocatalysts, photocatalysis, oxidative desulfurization, lithium storage and adsorption.

Polyoxometalates (POMs), Metal-Organic Frameworks, Catalysts, Oxidative Desulfurization, Adsorption

Published online 6/30/2019, 19 pages

Citation: Yunpeng He, Shuijin Yang, Polyoxometalate-Based Metal-Organic Framework Composites, Materials Research Foundations, Vol. 53, pp 257-275, 2019

DOI: https://doi.org/10.21741/9781644900291-12

Part of the book on Metal-Organic Framework Composites

[1] K. Suzuki, S. Sato, M. Fujita, Template synthesis of precisely monodisperse silica nanoparticles within self-assembled organometallic spheres, Nat. Chem. 2(2010) 25-29. https://doi.org/10.1038/nchem.446
[2] Z. H. Kang, E. B. Wang, B. D. Mao, et al, Controllable fabrication of carbon nanotube and nanobelt with a polyoxometalate-assisted mild hydrothermal process, J. Am. Chem. Soc. 127(2005) 6534-6535. https://doi.org/10.1021/ja051228v
[3] Z. H. Kang, Y. Liu, S. T. Lee, Small-sized silicon nanoparticles: new nanolights and nanocatalysts, Nanoscale. 3(2011) 777-791. https://doi.org/10.1039/c0nr00559b
[4] J. R. Long, O. M. Yaghi, The pervasive chemistry of metal–organic frameworks, Chem. Soc. Rev. 38(2009) 1213–1214. https://doi.org/10.1039/b903811f
[5] H. K. Chae, D. Y. Siberio-Perez, J. Kim, et al, A route to high surface area, porosity and inclusion of large molecules in crystals, Nature. 427(2004) 523-527. https://doi.org/10.1038/nature02311
[6] K. T. Holman, Molecule-constructed microporous materials: long under our noses, increasingly on our tongues, and now in our bellies, Angew. Chem., Int. Ed. 50(2011) 1228-1230. https://doi.org/10.1002/anie.201006783
[7] J. Q. Sha, J. W. Sun, C. Wang, et al, Syntheses study of Keggin POM supporting MOFs system, Cryst. Growth Des. 12(2012) 2242-2250. https://doi.org/10.1021/cg201478y
[8] A. Aijaz, T. Akita, N. Tsumori, et al, Metal-organic framework-immobilized polyhedral metal nanocrystals: reduction at solid-gas interface, metal segregation, core-shell structure, and high catalytic activity, J. Am. Chem. Soc. 135(2013) 16356-16359. https://doi.org/10.1021/ja4093055
[9] Y. Yuan, F. X. Sun, L. N. Li, et al, Porous aromatic frameworks with anion-templated pore apertures serving as polymeric sieves, Nat. Commun. 5(2014) 4260-4268. https://doi.org/10.1038/ncomms5260
[10] K. Manna, T. Zhang, W. B. Lin, Stable porphyrin Zr and Hf metal–organic frameworks featuring 2.5 nm cages: high surface areas, SCSC transformations and catalyses, J. Am. Chem. Soc. 136(2014) 6566-6569. https://doi.org/10.1039/c5sc00213c
[11] M. J. Dong, M. Zhao, S. Ou, et al, A luminescent dye@ MOF platform: emission fingerprint relationships of volatile organic molecules, Angew. Chem. Int. Ed. 53(2014) 1575-1579. https://doi.org/10.1002/anie.201307331
[12] K. Mo, Y. H. Yang, Y. Cui, A homochiral metal-organic framework as an effective asymmetric catalyst for cyanohydrin synthesis, J. Am. Chem. Soc. 136(2014) 1746-1749. https://doi.org/10.1021/ja411887c
[13] D. Tian, Q. Chen, Y. Li, et al, A mixed molecular building block strategy for the design of nested polyhedron metal-organic frameworks, Angew. Chem. Int. Ed. 53(2014) 837-841. https://doi.org/10.1002/anie.201307681
[14] W. W. Zhan, Q. Kuang, J. Z. Zhou, et al, Semiconductor@metal-organic framework core-shellHeterostructures: a case of ZnO@ZIF-8 nanorods with selective photoelectrochemical response, J. Am. Chem. Soc. 135(2013) 1926-1933. https://doi.org/10.1021/ja311085e
[15] D. Y. Du, J. S. Qin, S. L. Li, et al. ChemInform abstract: recent advances in porous polyoxometalate-based metal-organic framework materials, Chem. Soc. Rev. 43(2014) 4615-4632. https://doi.org/10.1039/c3cs60404g
[16] A. M. Khenkin, L. Weiner, Y. Wang, et al, Electron and oxygen transfer in polyoxometalate, H(5)PV(2)Mo(10)O(40), catalyzed oxidation of aromatic and alkyl aromatic compounds: evidence for aerobic Mars-van Krevelen-type reactions in the liquid homogeneous phase, J. Am. Chem. Soc. 123(2001) 8531-8542. https://doi.org/10.1021/ja004163z
[17] N. M. Okun, T. M. Anderson, K. I. Hardcastle, et al, Cupric Decamolybdodivanadophosphate. a coordination polymer heterogeneous catalyst for rapid, high conversion, high selectivity sulfoxidation using the ambient environment, Inorg. Chem. 42(2003) 6610-6612. https://doi.org/10.1021/ic0348953
[18] T. Rüther, V. M. Hultgren, B. P. Timko, et al, Electrochemical investigation of photooxidation processes promoted by sulfo-polyoxometalates: coupling of photochemical and electrochemical processes into an effective catalytic cycle, J. Am. Chem. Soc. 125(2003) 10133-10143. https://doi.org/10.1021/ja029348f
[19] C. L. Hill. Stable, Self-Assembling, Equilibrating catalysts for green chemistry, Angew. Chem. Int. Ed. (2004) 402-404. https://doi.org/10.1002/anie.200301701
[20] J. M. Clemente-Juan, E. Coronado. Coord, Magnetic clusters from polyoxometalate complexes, Chem. Rev. 193-195(1999) 361-394. https://doi.org/10.1016/s0010-8545(99)00170-8
[21] T. Yamase, P. V. Prokop, Photochemical formation of tire-shaped molybdenum blues: topology of a defect anion, [Mo(142)O(432)H(28)(H(2)O)(58)](12-), Angew. Chem. Int. Ed. 41(2002) 466-469. https://doi.org/10.1002/1521-3773(20020201)41:3<466::aid-anie466>3.0.co;2-w
[22] J. J. Gong, W. S. Zhang, Y. Liu, et al, Keggin polyanion and copper cluster based coordination polymer towards model for complex nanosystem, Dalton Trans. 41(2012) 5468-5471. https://doi.org/10.1039/c2dt30284e
[23] R. Canioni, C. Roch-Marchal, F. Sécheresse, et al, Stable polyoxometalate insertion within the mesoporous metal organic framework MIL-100(Fe), J. Mater. Chem. 24(2011) 1226-1233. https://doi.org/10.1039/c0jm02381g
[24] O. Basu, S. Mukhopadhyay, S. K. Das, Cobalt based functional inorganic materials: electrocatalytic water oxidation, J. Chem. Sci. 130(2018) 93-108. https://doi.org/10.1007/s12039-018-1494-4
[25] B. Nohra, H. El Moll, L. M. Rodriguez Albelo, et al, Polyoxometalate- based metal organic frameworks (POMOFs): structural trends, energetics, and high electrocatalytic efficiency for hydrogen evolution reaction, J. Am. Chem. Soc. 133(2011) 13363-13374. https://doi.org/10.1021/ja201165c
[26] J. S. Qin, D. Y. Du, W. Guan, et al, Ultrastable polymolybdate-based metal-organic frameworks as highly active electrocatalysts for hydrogen generation from water, J. Am. Chem. Soc. 137(2015) 7169-7177. https://doi.org/10.1021/jacs.5b02688
[27] W. A. Shah, A. Waseem, M. A. Nadeem, et al, Leaching-free encapsulation of cobalt-polyoxotungstates in MIL-100 (Fe) for highly reproducible photocatalytic water oxidation, Appl. Catal., A. 567(2018) 132-138. https://doi.org/10.1016/j.apcata.2018.08.002
[28] Z. M. Zhang, T. Zhang, C. Wang, et al, Photosensitizing metal-organic framework enabling visible-light-driven proton reduction by a Wells-Dawson-type polyoxometalate, J. Am. Chem. Soc. 137 (2015) 3197-3200. https://doi.org/10.1021/jacs.5b00075
[29] H. Li, S. Yao, H. L. Wu, et al, Charge-regulated sequential adsorption of anionic catalysts and cationic photosensitizers into metal-organic frameworks enhances photocatalytic proton reduction, Appl. Catal. B. 224(2018) 46-52. https://doi.org/10.1016/j.apcatb.2017.10.031
[30] X. H. Zhong, Y. Lu, F. Luo, et al, A nanocrystalline POM@MOFs catalyst for the degradation of phenol: effective cooperative catalysis by metal nodes and POM guests, Chem. Eur. J. 224(2018) 3045-3051. https://doi.org/10.1002/chem.201705677
[31] J. M. Campos-Martin, M. C. Capel-Sanchez, P. Perez-Presas, et al, Oxidative processes of desulfurization of liquid fuels, J. Chem. Technol. Biotechnol. 85(2010) 879-890. https://doi.org/10.1002/jctb.2371
[32] X. Ma, A. Zhou, C. Song, A novel method for oxidative desulfurization of liquid hydrocarbon fuels based on catalytic oxidation using molecular oxygen coupled with selective adsorption, Catal. Today. 123(2007) 276-284. https://doi.org/10.1016/j.cattod.2007.02.036
[33] E. Ito, J. A. R. Van Veen, On novel processes for removing sulphur from refinery streams, Catal. Today. 116(2006) 446-460. https://doi.org/10.1016/j.cattod.2006.06.040
[34] Y. Gao, Z. Lv, R. Gao, et al, Oxidative desulfurization process of model fuel under molecular oxygen by polyoxometalate loaded in hybrid material CNTs@MOF-199 as catalyst, J. Hazard. Mater. 359(2018) 258-265. https://doi.org/10.1016/j.jhazmat.2018.07.008
[35] X. L. Hao, Y. Y. Ma, H. Y. Zang, et al, A polyoxometalate-encapsulating ctionic metal-organic framework as a heterogeneous catalyst for desulfurization, Chem. Eur. J. 21(2015) 3778-3784. https://doi.org/10.1002/chem.201405825
[36] C. M. Granadeiro, L. S. Nogueira, D. Julião, et al, Influence of porous MOF support in the catalytic performance of Eu-polyoxometalate based materials: desulfurization of model diesel, Catal. Sci. Technol. 6(2016) 1515-1522. https://doi.org/10.1039/c5cy01110h
[37] Y. Zhao, X. F. Li, B. Yan, et al, Recent developments and understanding of novel mixed transition-metal oxides as anodes in lithium ion batteries, Adv. Energy Mater. 6(2016) 1502175. https://doi.org/10.1002/aenm.201502175
[38] J. Xu, J. Mahmood, Y. Dou, et al, 2D frameworks of C2N and C3N as new anode materials for lithium-ion batteries, Adv. Mater. 29(2017) 1702007. https://doi.org/10.1002/adma.201702007
[39] J. J. Chen, M. D. Symes, S. C. Fan, et al, High-performance polyoxometalate-based cathode materials for rechargeable lithium-ion batteries, Adv. Mater. 27(2015) 4649-4654. https://doi.org/10.1002/adma.201501088
[40] H. Wang, S. Hamanaka, Y. Nishimoto, et al, Control of the grafting of hybrid polyoxometalates on metal and carbon surfaces: toward submonolayers, J. Am. Chem. Soc. 134(2012) 4918-4924.
[41] T. Wei, M. Zhang, P. Wu, et al, POM-based metal-organic framework reduced graphene oxide nanocomposites with hybrid behavior of battery-supercapacitor for superior lithium storage, Nano Energy, 34(2017) 205-214. https://doi.org/10.1016/j.nanoen.2017.02.028
[42] A. M. Zhang, M. Zhang, D. Lan, et al, Polyoxometalate-based metal-organic framework on carbon cloth with a hot-pressing method for high-performance lithium-ion batteries, Inorg. Chem. 57(2018) 11726-11731. https://doi.org/10.1021/acs.inorgchem.8b01860
[43] M. Zhang, A. M. Zhang, X. X. Wang, et al, Encapsulating ionic liquids into POM-based MOFs to improve their conductivity for superior lithium storage, J. Mater. Chem. A. 6(2018) 8735-8741. https://doi.org/10.1039/c8ta01062e
[44] A. X. Yan, S. Yao, Y. G. Li, et al, Incorporating polyoxometalates into a porous MOF greatly improves its selective adsorption of cationic dyes, Chem. Eur. J. 20(2014) 6927-6933. https://doi.org/10.1002/chem.201400175
[45] M. Ghahramaninezhad, B. Soleimani, M. N. Shahrak, A simple and novel protocol for Li-trapping with a POM/MOF nano-composite as a new adsorbent for CO2 uptake, New J. Chem. 42(2018) 4639-4645. https://doi.org/10.1039/c8nj00274f
[46] X. X. Liu, W. P. Gong, J. Luo, et al, Selective adsorption of cationic dyes from aqueous solution by polyoxometalate-based metal–organic framework composite, Appl. Surf. Sci. 362(2016) 517-524. https://doi.org/10.1016/j.apsusc.2015.11.151