MXene and its Sensing Applications

$20.00

MXene and its Sensing Applications

Pramod K. Kalambate, Santosh W. Zote, Yue Shen, Dinesh N. Navale, Dnyaneshwar K. Kulal, Jingyi Wu, Prasanna B. Ranade, Ramyakrishna Pothu, Rajender Boddula, Yunhui Huang

MXenes possess excellent electrical conductivities, unique layered structure, large surface area, and good catalytic activities which make them appropriate for the fabrication of sensing platforms. This chapter discusses recent advances in the area of MXene based electrochemical (bio) sensors, piezoresistive sensors, gas sensors, and optical sensors. Each sensor has been discussed with suitable example in order to give a clear idea about the utility of these materials in sensing. These sensors are useful for the determination of a plethora of analytes, gases, and monitoring of the human subtle body movements.

Keywords
MXene, Electrochemical Sensor, Piezoresistive Sensors, Electrocatalyst, Gas Sensors

Published online 5/30/2019, 12 pages

Citation: Pramod K. Kalambate, Santosh W. Zote, Yue Shen, Dinesh N. Navale, Dnyaneshwar K. Kulal, Jingyi Wu, Prasanna B. Ranade, Ramyakrishna Pothu, Rajender Boddula, Yunhui Huang, MXene and its Sensing Applications, Materials Research Foundations, Vol. 51, pp 204-215, 2019

DOI: https://doi.org/10.21741/9781644900253-9

Part of the book on MXenes: Fundamentals and Applications

References
[1] S. Sun, Z. Xie, Y. Yan, S. Wu, Hybrid energy storage mechanisms for sulfur-decorated Ti3C2 MXene anode material for high-rate and long-life sodium-ion batteries, Chem. Eng. J. 366 (2019) 460-467. https://doi.org/10.1016/j.cej.2019.01.185
[2] L. Lorencova, T. Bertok, J. Filip, M. Jerigova, D. Velic, P. Kasak, K. A. Mahmoud, J. Tkac, Highly stable Ti3C2Tx (MXene)/Pt nanoparticles-modified glassy carbon electrode for H2O2 and small molecules sensing applications, Sens. Actuators B Chem 263 (2018) 360-368. https://doi.org/10.1016/j.snb.2018.02.124
[3] Y. Zhang, L. Wang, N. Zhang, Z. Zhou, Adsorptive environmental applications of MXene nanomaterials: a review, RSC Adv. 8 (2018) 19895-19905. https://doi.org/10.1039/c8ra03077d
[4] P. K. Kalambate, B. J. Sanghavi, S. P. Karna, A. K. Srivastava, Simultaneous voltammetric determination of paracetamol and domperidone based on a graphene/platinum nanoparticles/nafion composite modified glassy carbon electrode, Sens. Actuators B Chem 213 (2015) 285-294. https://doi.org/10.1016/j.snb.2015.02.090
[5] P. K. Kalambate, C. R. Rawool, A. K. Srivastava, Voltammetric determination of pyrazinamide at graphene-zinc oxide nanocomposite modified carbon paste electrode employing differential pulse voltammetry, Sens. Actuators B Chem 237 (2016)196-205. https://doi.org/10.1016/j.snb.2016.06.019
[6] P. K. Kalambate, A. K. Srivastava, Simultaneous voltammetric determination of paracetamol, cetirizine and phenylephrine using a multiwalled carbon nanotube-platinum nanoparticles nanocomposite modified carbon paste electrode, Sens. Actuators B Chem 233 (2016) 237-248. https://doi.org/10.1016/j.snb.2016.04.063
[7] P. K. Kalambate, Y. Li, Y. Shen, Y. Huang, Mesoporous Pd@Pt core-shell nanoparticles supported on multi-walled carbon nanotubes as a sensing platform: Application to simultaneous electrochemical detection of anticancer drugs doxorubicin and dasatinib, Anal. Methods 11 (2019) 443-453. https://doi.org/10.1039/c8ay02381f
[8] B. J. Sanghavi, N. S. Gadhari, P. K. Kalambate, S. P. Karna, A. K. Srivastava, Potentiometric stripping analysis of arsenic using a graphene paste electrode modified with thiacrown ether and gold nanoparticles, Microchim. Acta 182 (2015) 1473-1481. https://doi.org/10.1007/s00604-015-1470-3
[9] X. Gao, Y. Gao, C. Bian, H. Ma, H. Liu, Electroactive nanoporous gold driven electrochemical sensor for the simultaneous detection of carbendazim and methyl parathion, Sens. Actuators B Chem 310 (2019) 78-85. https://doi.org/10.1016/j.electacta.2019.04.120
[10] P. K. Kalambate, Dhanjai, Z. Huang, Y. Li, Y. Shen, M. Xie, Y. Huang, A. K. Srivastava, Core@Shell nanomaterials based sensing devices: A Review, Trends Anal. Chem. 115 (2019) 147-161. https://doi.org/10.1016/j.trac.2019.04.002
[11] P. K. Kalambate, C. R. Rawool, A. K. Srivastava, Fabrication of graphene-multiwalled carbon nanotubes-polyaniline modified carbon paste electrode for simultaneous electrochemical determination of terbutaline sulphate and guaifenesin, New. J. Chem. 41 (2017) 7061-7072. https://doi.org/10.1039/c7nj00101k
[12] Y. Zhang, X. Jiang, J. Zhang, H, Zhang, Y. Li, Simultaneous voltammetric determination of acetaminophen and isoniazid using MXene modified screen-printed electrode, Biosens. Bioelectron. 130 (2019) 315-321. https://doi.org/10.1016/j.bios.2019.01.043
[13] L. Wu, X. Lu, Dhanjai, Z. –S. Wu, Y. Dong, X. Wang, S. Zheng, J. Chen, 2D transition metal carbide MXene as a robust biosensing platform for enzyme immobilization and ultrasensitive detection of phenol, Biosens. Bioelectron. 107 (2018) 69-75. https://doi.org/10.1016/j.bios.2018.02.021
[14] J. Liu, X. Jiang, R. Zhang, Y. Zhang, L. Wu, W. Lu, J. Li, Y. Li, H. Zhang, MXene-enabled electrochemical microfluidic biosensor: applications toward multicomponent continuous monitoring in whole blood, Adv. Funct. Mater. 29 (2019) 1807326. https://doi.org/10.1002/adfm.201807326
[15] M. L. Desai, H. Basu, R. K. Singhal, S. Saha , S. K. Kailasa, Ultra-small two dimensional MXene nanosheets for selective and sensitive fluorescence detection of Ag+ and Mn2+ ions, Colloids Surf. A Physicochem. Eng. Asp. 565 (2019) 70–77. https://doi.org/10.1016/j.colsurfa.2018.12.051
[16] X. Chen, X. Sun, W. Xu, G. Pan, D. Zhou, J. Zhu, H. Wang, X. Bai, B. Dong, H. Song, Ratiometric photoluminescence sensing based on Ti3C2 MXene quantum dots as an intracellular pH sensor, Nanoscale 10 (2018) 1111–1118. https://doi.org/10.1039/c7nr06958h
[17] X. Peng, Y. Zhang, D. Lu, Y. Guo, S. Guo, Ultrathin Ti3C2 nanoscheets based off-on flurescent nanoprobe for rapid and sensitive detection of HPV infection, Sens. Actuators B Chem 286 (2019) 222-229. https://doi.org/10.1016/j.snb.2019.01.158
[18] T. Anukunprasert, C. Saiwan, E. Traversa, The development of gas sensor for carbon monoxide monitoring using nanostructure Nb-TiO2, Sci. Technol. Adv. Mater. 6 (2005) 359–363. https://doi.org/10.1016/j.stam.2005.02.020
[19] G. Korotcenkov, Metal oxides for solid-state gas sensors: What determines our choice? Mater. Sci. Eng. B 139 (2007) 1–23.
[20] X. Liu, S. Cheng, H. Liu, S. Hu, D. Zhang, H. Ning, A survey on gas sensing technology, Sensor 12 (2012) 9635–9665. https://doi.org/10.3390/s120709635
[21] V. E. Bochenkov, G. B. Sergeev, Sensitivity, selectivity and stability of gas-sensitive metal oxide nanostructures in: A. Umar, Y. B. Hahn (Eds.), Metal oxide nanostructures and their applications, American Scientific Publication, 3 (2010), pp. 31–52.
[22] S. J. Kim, H.-J. Koh, C. E. Ren, O. Kwon, K. Maleski, S.-Y. Cho, B. Anasori, C.-K. Kim, Y.-K. Choi, J. Kim, Y. Gogotsi, H.-T. Jung, Metallic Ti3C2Tx MXene gas sensors with ultrahigh signal-to-noise ratio, ACS Nano12 (2018) 986-993. https://doi.org/10.1021/acsnano.7b07460
[23] A. K. Prasad, D. J. Kubinskib, P. I. Gouma, Comparison of sol-gel and ion beam deposited MoO3 thin film gas sensors for selective ammonia detection, Sens. Actuators B Chem 93 (2003) 25–30. https://doi.org/10.1016/s0925-4005(03)00336-8
[24] B. Timmer, W. Olthuis, A.V.D. Berg, Ammonia sensors and their application – a review, Sens. Actuators B Chem 107 (2005) 666–677. https://doi.org/10.1016/j.snb.2004.11.054
[25] B. Xiao, Y. Li, X. Yu, J. Cheng, MXenes: reusable materials for NH3 sensor or capturer by controlling the charge injection, Sens. Actuators B Chem 235 (2016) 103-109. https://doi.org/10.1016/j.snb.2016.05.062
[26] M. Gautam, A. H. Jayatissa, Ammonia gas sensing behavior of graphene surface decorated with gold nanoparticles, Solid-State Electron. 78 (2012) 159-165. https://doi.org/10.1016/j.sse.2012.05.059
[27] L. Fenn, D. Kissel, Ammonia volatilization from surface applications of ammonium compounds on calcareous soils: I. general theory, Soil Sci. Soc. Am. J. 37 (1973) 855-859. https://doi.org/10.2136/sssaj1973.03615995003700060020x
[28] Y. Xie, P. R. C. Kent, Hybrid density functional study of structural and electronic properties of functionalized Tin+1Xn (X = C, N) monolayers, Phys. Rev. B: Condens, Matter Mater. Phys. 87 (2013) 235441. https://doi.org/10.1103/physrevb.87.235441
[29] F. Shahzad, M. Alhabeb, C. B. Hatter, B. Anasori, S. M. Hong, C. M. Koo, Y. Gogotsi, Electromagnetic interference shielding with 2D transition metal carbides (MXenes), Science 353 (2016) 1137−1140. https://doi.org/10.1126/science.aag2421
[30] X.-F. Yu, Y.-C. Li, J.-B. Cheng, Z.-B. Liu, Q.-Z. Li, W.-Z. Li, X. Yang, B. Xiao, Monolayer Ti2CO2: A promising candidate for NH3 sensor or capturer with high sensitivity and selectivity, ACS Appl. Mater. Interfaces 7 (2015) 13707-13713. https://doi.org/10.1021/acsami.5b03737
[31] Y. Ma, N. Liu, L. Li, X. Hu, Z. Zou, J. Wang, S. Luo, Y. Gao, A highly flexible and sensitive piezoresistive sensor based on MXene with greatly changed interlayer distances, Nat. Commun. 8 (2017) 1207. https://doi.org/10.1038/s41467-017-01136-9
[32] Y. Yue, N. Liu, W. Liu, M. Li, Y. Ma, C. Luo, S. Wang, J. Rao, X. Hu, J. Su, Z. Zhang, Q. Huang, Y. Gao, 3D hybrid porous MXene-sponge network and its application in piezoresistive sensor, Nano Energy 50 (2018) 79–87. https://doi.org/10.1016/j.nanoen.2018.05.020
[33] Y. Ma, Y. Yue, H. Zhang, F.Cheng, W. Zhao, J. Rao, S. Luo, J.Wang, X. Jiang, Z. Liu, N. Liu, Y.Gao, 3D synergistical MXene/reduced graphene oxide aerogel for a piezoresistive sensor, ACS Nano 12 (2018) 3209−3216. https://doi.org/10.1021/acsnano.7b06909