Application of Supercritical Carbon Dioxide in the Leather Industry


Application of Supercritical Carbon Dioxide in the Leather Industry

Surya Pratap Goutam, Asheesh Kumar, Devesh Kumar, Rajkamal Shastri, Anil Kumar Yadav

In numerous processes and synthesis, supercritical carbon oxide can be used as a nontoxic and green solvent. This chapter described the supercritical carbon dioxide and its application in the leather industry to develop an eco-friendly technology. Supercritical carbon dioxide has several unique properties and has great potential for advanced processing of materials. Supercritical carbon dioxide as a potential solvent for leather processing hopes to reduce environmental burden by avoiding the parallel pollutions by leather processing.

Supercritical Carbon Dioxide, Solvent, Extraction, Leather Industries, Toxicity

Published online 5/25/2019, 18 pages

Citation: Surya Pratap Goutam, Asheesh Kumar, Devesh Kumar, Rajkamal Shastri, Anil Kumar Yadav, Application of Supercritical Carbon Dioxide in the Leather Industry, Materials Research Foundations, Vol. 50, pp 147-164, 2019


Part of the book on Industrial Applications of Green Solvents

[1] W. Deng, D. Chen, M. Huang, J. Hu, L. Chen, Carbon dioxide deliming in leather production: a literature review, J. Clean. Prod.87 (2015) 26-38.
[2] E. Heidemann. E. R. KG-Darmstadt, Fundamentals of leather manufacture, Polymer Int. 37 (1993) 149-150.
[3] A.D. Covington, Tanning chemistry: The science of leather, First Edition, Royal Society of Chemistry, 2009.
[4] W.H. Hauthal, Advances with supercritical fluids, Chemosphere, 43 (2001) 123-135.
[5] P. Licence, J. Ke, M. Sokolova, S.K. Ross, M. Poliakoff, Chemical reactions in supercritical carbon dioxide: from laboratory to commercial plant, Green Chem. 5 (2003) 99-104.
[6] J. Hu, W. Deng, Application of supercritical-carbon dioxide for leather processing, J. Clean. Prod.113 (2016) 931-946.
[7] J. A. Montgomery, M. J. Frisch, J. W. Ochterski, and G. A. Petersson, A complete basis set model chemistry. VI. Use of density functional geometries and frequencies, 110 (1999) 2822-2827.
[8] P. Munshi, S. Bhaduri, Supercritical CO2: a twenty-first century solvent for the chemical industry, Curr. Sci. 97 (2009) 63-72.
[9] S.Bowadt, S.B. Hawthorne, Supercritical fluid extraction in environmental analysis, J.Chrom. 703 (1995) 549-571.
[10] S.B. Hawthorne, Analytical-scale supercritical fluid extraction, Anal. Chem. 62 (1990) 633A-642A.
[11] L.H. McDaniel, M.A. Khorassani, L.T. Taylor,Supercritical fluid extraction of wood pulp with analysis by capillary gas chromatography-mass spectrometry, The Journal of Supercritical Fluids, 19 (2001) 275-286.
[12] V. Kumar, C. Majumdar, P. Roy, Effects of endocrine disrupting chemicals from leather industry effluents on male reproductive system, J. Steroid Biochem. Mol.Biol. 111 (2008) 208-216.
[13] R. Laurenti, M.Redwood, R.Puig, B. Frostell, Measuring the environmental footprint of leather processing technologies, J. Ind. Ecol. 21 (2017) 1180-1187.
[14] K. Joseph, N. Nithya, Material flows in the life cycle of leather, Journal of Cleaner Production 17(2009) 676-682.
[15] M. Harrod, P. Moller, Hydrogenation of fats and oils at supercritical conditions, Process Technology Proceedings. 12 (1996) 43-48.
[16] M.G. Hitzler, F.R. Smail, S.K. Ross, M. Poliakoff, Selective catalytic hydrogenation of organic compounds in supercritical fluids as a continuous process, Org. Proc. Res. Dev. 2 (1998) 137.
[17] M.A. McHugh, V J. Krukonis, Supercritical fluid extraction: principles and practice, Second ed., Elsevier, Boston, 1994.
[18] E. Bach, E. Cleveland, E. Schollmeyer, Past, present and future of supercritical fluid dyeing technology-an overview, Rev. Prog. Color, 32(2002) 88-102.
[19] J. Ludvik, United Nations industrial development organization (UNIDO), The scope for decreasing pollution load in leather processing, US/RAS/92/120/11-51.
[20] Y. Wang, Y. Zeng, X. Liao, Q. He, B. Shi, Ammonia nitrogen in tannery wastewater: distribution, origin and prevention, J. Am. Leather Chem. Assoc. 107 (2011) 40-50.
[21] A.Lemberg, M.A. Fernandez, Hepatic encephalopathy, ammonia, glutamine and oxidative stress, Ann. Hepatol. 8 (2009) 95-102.
[22] A. Julio, A. Camargo, A. Alvaro, Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: a global assessment, Environ. Int. 32 (2006) 831-849.
[23] D. Paredes, P. Kuschk, T.S.A. Mbwette, F. Stange, R.A. Muller, H. Koser, New aspects of microbial nitrogen transformations in the context of wastewater treatment- A review, Eng. Life Sci. 7 (2007) 13-25.
[24] N.F. Fahim, B.N. Barsoum, A.E. Eid, M.S. Khalil, Removal of chromium(III) from tannery wastewater using activated carbon from sugar industrial waste, J. Hazard. Mater. 136 (2006) 303-309.
[25] G. Arslan, E. Pehlivan, Batch removal of chromium(VI) from aqueous solution by Turkish brown coals, Bioresour. Technol. 98 (2007) 2836-2845.
[26] S.P.Goutam, G. Saxena, V. Singh, A. K.Yadav, R.N.Bharagava, K.B. Thapa, Green synthesis of TiO2 nanoparticles using leaf extract of Jatropha curcas L. for photocatalytic degradation of tannery wastewater, Chem. Eng. J.336 (2018) 386-396.
[27] I. Pasquali, R. Bettini, F. Giordano, Solid-state chemistry and particle engineering with supercritical fluids in pharmaceutics, Eur. J. Pharm. Sci. 127 (2006) 299-310.
[28] M. Perrut, J. Jung, F. Leboeuf, Enhancement of dissolution rate of poorly soluble active ingredients by supercritical fluid processes. Part I. Micronisation of neat particles, Int. J. Pharm. 288 (2005) 3-10.
[29] R.H. Muller, C. Jacobs, O. Kayser, Nanosuspensions as particulate drug formulations in therapy: rationale for development and what we can expect for the future, Adv. Drug Deliv. Rev. 47 (2001) 3-19.
[30] J. Fages, H. Lochard, J.J. Letourneau, M. Sauceau, E. Rodier, Particle generation for pharmaceutical applications using supercritical fluid technology, Powder Technol. 141 (2004) 219-226.
[31] A.D. Covington, Modern tanning chemistry, Chem. Soc. Rev. 26 (1997) 111-126.
[32] A.Marsal, P.J.Celma, J.Cot, M.Cequier, Application of the supercritical CO2 extraction technology on the recovery of natural fat from the sheepskin degreasing process, The Journal of Supercritical Fluids, 18 (2000) 65-72.
[33] Process for the treatment of skins, hides or sheet materials containing collagen by a dense, pressurized fluid, US Patent.
[34] L. Liao, Y. Feng, M. Chen, Z. Li, Study on non-polluting leather making technology, using CO2 supercritical fluids. Feasibility study on CO2 supercritical fluids clean production technology of leather, People Republic China. 28 (1999) 14-16.
[35] B. Diaz-Reinoso, A. Moure, H. Dominguez, J.C. Parajo, Supercritical CO2 extraction and purification of compounds with antioxidant activity, J. Agric. Food Chem. 54 (2006) 2441-2469.
[36] Y. Ahn, S.J. Bae, M. Kim, S.K. Cho, S. Baik, J. IkLee, J.E. Cha, Review of supercritical CO2 power cycle technology and current status of research and development, Nuclear Engineering and Technology, 47 (2015) 647-661.
[37] Z.Li, L. Liao, Y. Feng, Method for leather-making with CO2 supercritical fluid as medium, China Patent., 2005.
[38] A. Marsal, P.J. Celma, J. Cot, M. Cequier, Supercritical CO2 extraction as a clean degreasing process in the leather industry. The Journal of Supercritical Fluids, 16 (2000) 217-223.
[39] M. Renner, E. Weidner, B. Jochems, H. Geihsler, Free of water tanning using CO2 as process additive-An overview on the process development, The Journal of Supercritical Fluids, 66 (2012) 291-296.
[40] Q. Yang, S. Qin, J. Chen, W. Ni, Q. Xu, Supercritical carbon dioxide-assisted loosening preparation of dry leather, J. Appl. Polym. Sci. 113 (2009) 4015-4022.
[41] D. Weijun, L. Chen, H. Jing, Development of carbon dioxide gas in leather deliming process, China Leather, 42 (2013) 51-55.
[42] R. Manfred, W. Eckhard, J. Bjorn, G. Helmut, Free of water tanning using CO2 as process additive-An overview on the process development, The Journal of Supercritical Fluids 66 (2012) 291-296.
[43] P. Swidersky, D. Tuma, G. M. Schneider, High-pressure investigations on the solubility of anthraquinone dyestuffs in supercritical gases by VIS-spectroscopy. Part II-1,4-Bis-(n alkylamino)-9,10-anthraquinones and disperse Red 11 in CO2, N2O, and CHF3 up to 180 MPa, The Journal of Supercritical Fluids, 9 (1996) 12-18.