Water in Organic Synthesis as a Green Solvent


Water in Organic Synthesis as a Green Solvent

Muhammad Faisal

The growing demand for more sustainable approaches in synthetic chemistry has led to increasing attention in the application of H2O as a solvent in the last decade. H2O as a solvent is not only environmentally benign and inexpensive but also offers promising advantages, for instance, improves rates and yields; enhances chemo-, enantio-, regio-, stereo-selectivities; simplifies the process of reaction handling and workup; enables the recovering and reusing of the catalysts; avoids protection-deprotection steps; and allows milder reaction conditions. This book chapter focuses on the potential application of H2O as a solvent for organic synthesis, highlighting benefits and the spectrum of important organic reactions that can be performed in H2O with a green chemistry perspective.

Green Chemistry, Water, Reactivity and Selectivity, Protecting-Group Free Synthesis, Recycling of Catalysts

Published online 5/25/2019, 46 pages

Citation: Muhammad Faisal, Water in Organic Synthesis as a Green Solvent, Materials Research Foundations, Vol. 50, pp 61-106, 2019

DOI: https://doi.org/10.21741/9781644900239-3

Part of the book on Industrial Applications of Green Solvents

[1] P.J. Dunn, The importance of green chemistry in process research and development, Chem. Soc. Rev. 41 (2012) 1452–1461. https://doi.org/10.1039/c1cs15041c
[2] P.T. Anastas, Green chemistry and the role of analytical methodology development, Crit. Rev. Anal. Chem. 29 (1999) 167–175.
[3] P. Anastas, N. Eghbali, Green chemistry: principles and practice, Chem. Soc. Rev. 39 (2010) 301–312. https://doi.org/10.1039/b918763b
[4] S. Eminov, Catalytic conversion of fructrose, glucose and cellulose to 5-(hydroxymethyl) furfural (HMF), (2017).
[5] V.K. Ahluwalia, M. Kidwai, New trends in green chemistry, Springer Science & Business Media, 2004.
[6] V.K. Ahluwalia, M. Kidwai, Basic principles of green chemistry, in: New Trends Green Chem., Springer, 2004: pp. 5–14. https://doi.org/10.1007/978-1-4020-3175-5_3
[7] P.T. Anastas, M.M. Kirchhoff, Origins, current status, and future challenges of green chemistry, Acc. Chem. Res. 35 (2002) 686–694. https://doi.org/10.1021/ar010065m
[8] S.L.Y. Tang, R.L. Smith, M. Poliakoff, Principles of green chemistry: Productively, Green Chem. 7 (2005) 761–762. https://doi.org/10.1039/b513020b
[9] F.M. Kerton, R. Marriott, Alternative solvents for green chemistry, 2nd Ed., Royal Society of Chemistry, 2013.
[10] E. Buncel, R.A. Stairs, H. Wilson, The role of the solvent in chemical reactions, Oxford University Press, Oxford, 2003.
[11] J.H. Clark, S.J. Tavener, Alternative solvents: shades of green, Org. Process Res. Dev. 11 (2007) 149–155. https://doi.org/10.1021/op060160g
[12] P.T. Anastas, J.C. Warner, Green chemistry: theory and practice, Oxford university press Oxford, 2000.
[13] J.M. DeSimone, Practical approaches to green solvents, Science 297 (2002) 799–803. https://doi.org/10.1126/science.1069622
[14] J. Fraga-Dubreuil, G. Çomak, A.W. Taylor, M. Poliakoff, Rapid and clean synthesis of phthalimide derivatives in high-temperature, high-pressure H2O/EtOH mixtures, Green Chem. 9 (2007) 1067–1072. https://doi.org/10.1039/b704405d
[15] N.D. Gullickson, J.F. Scamehorn, J.H. Harwell, Liquid-coacervate extraction, in: J.F. Scamehorn, J.H. Harwell (Eds.) Surfactant based separation process, Marcel Dekker, New York, 1989, pp. 139–152. https://doi.org/10.1080/03602548908050926
[16] R. Breslow, U. Maitra, On the origin of product selectivity in aqueous diels-alder reactions, Tetrahedron Lett. 25 (1984) 1239–1240. https://doi.org/10.1016/s0040-4039(01)80122-2
[17] D.C. Rideout, R. Breslow, Hydrophobic acceleration of Diels-Alder reactions, J. Am. Chem. Soc. 102 (1980) 7816–7817. https://doi.org/10.1021/ja00546a048
[18] A. Lubineau, J. Augé, Y. Queneau, Water-promoted organic reactions, Synthesis (1994) 741–760. https://doi.org/10.1055/s-1994-25562
[19] V. Strand, Implementation of water as solvent in aerobic oxidative NHC-catalysis, Chalmers University of Technology Gothenburg, Sweden 2018
[20] S. Narayan, J. Muldoon, M.G. Finn, V.V Fokin, H.C. Kolb, K.B. Sharpless, On water: Unique reactivity of organic compounds in aqueous suspension, Angew. Chem. Int. Ed. 44 (2005) 3157. https://doi.org/10.1002/anie.200590069
[21] P. Klumphu, Development of new methodology in organic synthesis enabled by aqueous micellar catalysis, University of California, Santa Barbara, 2016.
[22] A. Chanda, V.V Fokin, Organic synthesis “on water,” Chem. Rev. 109 (2009) 725–748.
[23] B.H. Lipshutz, S. Ghorai, W.W.Y. Leong, B.R. Taft, D. V Krogstad, Manipulating micellar environments for enhancing transition metal-catalyzed cross-couplings in water at room temperature, J. Org. Chem. 76 (2011) 5061–5073. https://doi.org/10.1021/jo200746y
[24] B.H. Lipshutz, S. Ghorai, A.R. Abela, R. Moser, T. Nishikata, C. Duplais, A. Krasovskiy, R.D. Gaston, R.C. Gadwood, TPGS-750-M: a second-generation amphiphile for metal-catalyzed cross-couplings in water at room temperature, J. Org. Chem. 76 (2011) 4379–4391. https://doi.org/10.1021/jo101974u
[25] G. La Sorella, G. Strukul, A. Scarso, Recent advances in catalysis in micellar media, Green Chem. 17 (2015) 644–683. https://doi.org/10.1039/c4gc01368a
[26] A. Bhattacharjya, P. Klumphu, B.H. Lipshutz, Kumada–Grignard-type biaryl couplings on water, Nat. Comm. 6 (2015) 7401. https://doi.org/10.1038/ncomms8401
[27] R. Breslow, Hydrophobic effects on simple organic reactions in water, Acc. Chem. Res. 24 (1991) 159–164. https://doi.org/10.1021/ar00006a001
[28] Y. Jung, R.A. Marcus, On the theory of organic catalysis “on water,” J. Am. Chem. Soc. 129 (2007) 5492–5502.
[29] S. Narayan, J. Muldoon, M.G. Finn, V.V Fokin, H.C. Kolb, K.B. Sharpless, “On water”: Unique reactivity of organic compounds in aqueous suspension, Angew. Chem. Int. Ed. 44 (2005) 3275–3279. https://doi.org/10.1002/anie.200462883
[30] S. Otto, J.B.F.N. Engberts, J.C.T. Kwak, Million-fold acceleration of a Diels-Alder reaction due to combined Lewis acid and micellar catalysis in water, J. Am. Chem. Soc. 120 (1998) 9517–9525. https://doi.org/10.1021/ja9816537
[31] K.C. Nicolaou, H. Xu, M. Wartmann, Biomimetic total synthesis of gambogin and rate acceleration of pericyclic reactions in aqueous media, Angew. Chem. Int. Ed. 44 (2005) 756–761. https://doi.org/10.1002/anie.200462211
[32] R.N. Butler, W.J. Cunningham, A.G. Coyne, L.A. Burke, The influence of water on the rates of 1, 3-dipolar cycloaddition reactions: trigger points for exponential rate increases in water-organic solvent mixtures. water-super versus water-normal dipolarophiles, J. Am. Chem. Soc. 126 (2004) 11923–11929. https://doi.org/10.1021/ja040119y
[33] V.K. Tandon, H.K. Maurya, ‘On water’: unprecedented nucleophilic substitution and addition reactions with 1, 4-quinones in aqueous suspension, Tetrahedron Lett. 50 (2009) 5896–5902. https://doi.org/10.1016/j.tetlet.2009.07.149
[34] J.C. Lien, L.J. Huang, J.P. Wang, C.M. Teng, K.H. Lee, S.C. Kuo, Synthesis and antiplatelet, antiinflammatory, and antiallergic activities of 2-substituted 3-chloro-1, 4-naphthoquinone derivatives, Bioorg. Med. Chem. 5 (1997) 2111–2120. https://doi.org/10.1016/s0968-0896(97)00133-8
[35] A.El.Wareth.A.O. Sarhan, A.M.K. El-Dean, M.I. Abdel-Monem, Chemoselective reactions of 2, 3-dichloro-1, 4-naphthoquinone, Monatshefte Für Chemie 129 (1998) 205–212. https://doi.org/10.1007/pl00010156
[36] H. Yorimitsu, T. Nakamura, H. Shinokubo, K. Oshima, K. Omoto, H. Fujimoto, Powerful solvent effect of water in radical reaction: triethylborane-induced atom-transfer radical cyclization in water, J. Am. Chem. Soc. 122 (2000) 11041–11047. https://doi.org/10.1021/ja0014281
[37] S. Otto, J.B.F.N. Engberts, A systematic study of ligand effects on a lewis-acid-catalyzed Diels− Alder reaction in water. water-enhanced enantioselectivity, J. Am. Chem. Soc. 121 (1999) 6798–6806. https://doi.org/10.1021/ja984273u
[38] A.K. Chakraborti, S. Rudrawar, K.B. Jadhav, G. Kaur, S. V Chankeshwara, “On water” organic synthesis: a highly efficient and clean synthesis of 2-aryl/heteroaryl/styryl benzothiazoles and 2-alkyl/aryl alkyl benzothiazolines, Green Chem. 9 (2007) 1335–1340. https://doi.org/10.1039/b710414f
[39] G. Wittig, H. Laib, Zur Stevensschen Umlagerung von Oniumsalzen, Eu. J. Org. Chem. 580 (1953) 57–68. https://doi.org/10.1002/jlac.19535800108
[40] G. Wittig, G. Geissler, Zur Reaktionsweise des Pentaphenyl-phosphors und einiger Derivate, Eu. J. Org. Chem. 580 (1953) 44–57. https://doi.org/10.1002/jlac.19535800107
[41] B.E. Maryanoff, A.B. Reitz, The Wittig olefination reaction and modifications involving phosphoryl-stabilized carbanions. Stereochemistry, mechanism, and selected synthetic aspects, Chem. Rev. 89 (1989) 863–927. https://doi.org/10.1021/cr00094a007
[42] J. Dambacher, W. Zhao, A. El-Batta, R. Anness, C. Jiang, M. Bergdahl, Water is an efficient medium for Wittig reactions employing stabilized ylides and aldehydes, Tetrahedron Lett. 46 (2005) 4473–4477. https://doi.org/10.1016/j.tetlet.2005.04.105
[43] N. Azizi, M.R. Saidi, Highly chemoselective addition of amines to epoxides in water, Org. Lett. 7 (2005) 3649–3651. https://doi.org/10.1021/ol051220q
[44] S. Azoulay, K. Manabe, S. Kobayashi, Catalytic asymmetric ring opening of meso-epoxides with aromatic amines in water, Org. Lett. 7 (2005) 4593–4595. https://doi.org/10.1021/ol051546z
[45] B. Tan, D. Zhu, L. Zhang, P.J. Chua, X. Zeng, G. Zhong, Water-more than just a green solvent: a stereoselective one-pot access to all-chiral tetrahydronaphthalenes in aqueous media, Chem. Eur. J. 16 (2010) 3842–3848. https://doi.org/10.1002/chem.200902932
[46] Y. Mori, K. Manabe, S. Kobayashi, Catalytic use of a boron source for boron enolate mediated stereoselective aldol reactions in water, Angew. Chem. Int. Ed. 40 (2001) 2815–2818. https://doi.org/10.1002/1521-3773(20010803)40:15%3C2815::aid-anie2815%3E3.0.co;2-f
[47] S. Kobayashi, K. Manabe, Development of novel Lewis acid catalysts for selective organic reactions in aqueous media, Acc. Chem. Res. 35 (2002) 209–217. https://doi.org/10.1021/ar000145a
[48] U.M. Lindstrom, (Ed.) Organic reactions in water: principles, strategies and applications, Wiley-Blackwell, 2008.
[49] M.O. Simon, C.J. Li, Green chemistry oriented organic synthesis in water, Chem. Soc. Rev. 41 (2012) 1415-1427. https://doi.org/10.1039/c1cs15222j
[50] D. Dallinger, C.O. Kappe, Microwave-assisted synthesis in water as solvent, Chem. Rev. 107 (2007) 2563-2591. https://doi.org/10.1021/cr0509410
[51] M.B. Gawande, V.D.B. Bonifácio, R. Luque, P.S. Branco, R.S. Varma, Benign by design: catalyst-free in-water, on-water green chemical methodologies in organic synthesis, Chem. Soc. Rev. 42 (2013) 5522–5551. https://doi.org/10.1039/c3cs60025d
[52] V.V Rostovtsev, L.G. Green, V.V Fokin, K.B. Sharpless, A stepwise huisgen cycloaddition process: copper (I)‐catalyzed regioselective “ligation” of azides and terminal alkynes, Angew. Chem. Int. Ed. 114 (2002) 2708–2711. https://doi.org/10.1002/chin.200243045
[53] G.J. ten Brink, I.W.C.E. Arends, R.A. Sheldon, The Baeyer-Villiger reaction: New developments toward greener procedures, Chem. Rev. 104 (2004) 4105–4124. https://doi.org/10.1021/cr030011l
[54] G.R. Krow, The Baeyer-Villiger oxidation of ketones and aldehydes, Org. React. 43 (2004) 251–798.
[55] G.J. ten Brink, J.M. Vis, I.W.C.E. Arends, R.A. Sheldon, Selenium-catalyzed oxidations with aqueous hydrogen peroxide.2.Baeyer-Villiger reactions in homogeneous solution1, J. Org. Chem. 66 (2001) 2429–2433. https://doi.org/10.1021/jo0057710
[56] M. Kidwai, K. Singhal, S. Kukreja, One-pot green synthesis for pyrimido [4,5-d] pyrimidine derivatives, Zeitschrift Für Naturforsch. B. 62 (2007) 732–736. https://doi.org/10.1515/znb-2007-0518
[57] H.C. Hailes, Reaction solvent selection: The potential of water as a solvent for organic transformations, Org. Process Res. Dev. 11 (2007) 114–120. https://doi.org/10.1021/op060157x
[58] S.V Malhotra, R.P. Andal, V. Kumar, Aminolysis of epoxides in ionic liquid 1-ethylpyridinium trifluoroacetate as green and efficient reaction medium, Synth. Comm. 38 (2008) 4160–4169. https://doi.org/10.1080/00397910802323056
[59] K.W. Anderson, S.L. Buchwald, General catalysts for the Suzuki–Miyaura and Sonogashira coupling reactions of aryl chlorides and for the coupling of challenging substrate combinations in water, Angew. Chem. Int. Ed. 117 (2005) 6329–6333. https://doi.org/10.1002/ange.200502017
[60] D. Habibi, M. Nasrollahzadeh, T.A. Kamali, Green synthesis of the 1-substituted 1H-1,2,3,4-tetrazoles by application of the Natrolite zeolite as a new and reusable heterogeneous catalyst, Green Chem. 13 (2011) 3499–3504. https://doi.org/10.1039/c1gc15245a
[61] Z.N. Tisseh, M. Dabiri, M. Nobahar, A.A. Soorki, A. Bazgir, Catalyst-free synthesis of N-rich heterocycles via multi-component reactions, Tetrahedron, 68 (2012) 3351–3356. https://doi.org/10.1016/j.tet.2012.02.051
[62] S.H. Bairagi, P.P. Salaskar, S.D. Loke, N.N. Surve, D. V Tandel, M.D. Dusara, Medicinal significance of coumarins: A review, Int. J. Pharm. Res. 4 (2012) 16–19.
[63] L.D.S. Yadav, S. Singh, V.K. Rai, Catalyst-free, step and pot economic, efficient mercaptoacetylative cyclisation in H2O: synthesis of 3-mercaptocoumarins, Green Chem. 11 (2009) 878–882. https://doi.org/10.1039/b904655k
[64] T. Ikariya, K. Murata, R. Noyori, Bifunctional transition metal-based molecular catalysts for asymmetric syntheses, Org. Biomol. Chem. 4 (2006) 393–406. https://doi.org/10.1039/b513564h
[65] X. Wu, J. Xiao, Aqueous-phase asymmetric transfer hydrogenation of ketones–a greener approach to chiral alcohols, Chem. Commun. (2007) 2449–2466. https://doi.org/10.1039/b618340a
[66] X. Wu, J. Liu, X. Li, A. Zanotti‐Gerosa, F. Hancock, D. Vinci, J. Ruan, J. Xiao, On water and in air: fast and highly chemoselective transfer hydrogenation of aldehydes with iridium catalysts, Angew. Chem. Int. Ed. 45 (2006) 6718–6722. https://doi.org/10.1002/anie.200602122
[67] X. Yao, C.J. Li, Phosphine-triggered complete chemo-switch: from efficient aldehyde− alkyne− amine coupling to efficient aldehyde− alkyne coupling in water, Org. Lett. 7 (2005) 4395–4398. https://doi.org/10.1021/ol051575+
[68] A.L. Casalnuovo, J.C. Calabrese, Palladium-catalyzed alkylations in aqueous media, J. Am. Chem. Soc. 112 (1990) 4324–4330. https://doi.org/10.1021/ja00167a032
[69] F. Rodrigues, Y. Canac, A. Lubineau, A convenient, one-step, synthesis of β-C-glycosidic ketones in aqueous media, Chem. Commun. (2000) 2049–2050. https://doi.org/10.1039/b006642g
[70] S. Peters, F.W. Lichtenthaler, H.J. Lindner, A 2-C-fructosyl-propanone locked in a 2,7-dioxabicyclo [3.2.1] octane framework, Tetrahedron: Asymmetry, 14 (2003) 2475–2479. https://doi.org/10.1016/s0957-4166(03)00501-9
[71] M.B. Gawande, P.S. Branco, An efficient and expeditious Fmoc protection of amines and amino acids in aqueous media, Green Chem. 13 (2011) 3355–3359. https://doi.org/10.1039/c1gc15868f
[72] D. Basavaiah, A.J. Rao, T. Satyanarayana, Recent advances in the Baylis-Hillman reaction and applications, Chem. Rev. 103 (2003) 811–892. https://doi.org/10.1021/cr010043d
[73] L.D.S. Yadav, R. Patel, V.P. Srivastava, An easy access to functionalized allyl dithiocarbamates from Baylis-Hillman adducts in water, Tetrahedron Lett. 50 (2009) 1335–1339. https://doi.org/10.1016/j.tetlet.2009.01.023
[74] C. Moberg, L. Rákos, Preparation of chiral polymer-supported epoxides-Application in the synthesis of chelating ligands, React. Polym. 15 (1991) 25–35. https://doi.org/10.1016/0923-1137(91)90144-d
[75] F. Bossert, W. Vater, 1,4‐Dihydropyridines-a basis for developing new drugs, Med. Res. Rev. 9 (1989) 291–324. https://doi.org/10.1002/med.2610090304
[76] V.P. Litvinov, Advances in the Chemistry of Naphthyridines, Adv. Heterocycl. Chem. 91 (2006) 189–300.
[77] R.P. Wurz, A.B. Charette, Transition metal-catalyzed cyclopropanation of alkenes in water: Catalyst efficiency and in situ generation of the diazo reagent, Org. Lett. 4 (2002) 4531–4533. https://doi.org/10.1021/ol0270879
[78] L.F. Tietze, Domino reactions in organic synthesis, Chem. Rev. 96 (1996) 115–136.
[79] J.S. Yadav, B.V.S. Reddy, D. Narsimhaswamy, P.N. Lakshmi, K. Narsimulu, G. Srinivasulu, A.C. Kunwar, Domino Knoevenagel hetero-Diels–Alder reactions: a stereoselective synthesis of sugar fused furo [3,2-b] pyrano [4,3-d] pyran derivatives, Tetrahedron Lett. 45 (2004) 3493–3497. https://doi.org/10.1016/j.tetlet.2004.02.149
[80] M. Kiamehr, F.M. Moghaddam, An efficient ZnO-catalyzed synthesis of novel indole-annulated thiopyrano-chromene derivatives via Domino Knoevenagel-hetero-Diels–Alder reaction, Tetrahedron Lett. 50 (2009) 6723–6727. https://doi.org/10.1016/j.tetlet.2009.09.106
[81] M. Ghandi, E. Mohammadimehr, M. Sadeghzadeh, A.H. Bozcheloei, Efficient access to novel hexahydro-chromene and tetrahydro-pyrano [2,3-d] pyrimidine-annulated benzo-δ-sultones via a domino Knöevenagel-hetero-Diels–Alder reaction in water, Tetrahedron, 67 (2011) 8484–8491. https://doi.org/10.1016/j.tet.2011.09.010
[82] A. Deiters, S.F. Martin, Synthesis of oxygen-and nitrogen-containing heterocycles by ring-closing metathesis, Chem. Rev. 104 (2004) 2199–2238. https://doi.org/10.1021/cr0200872
[83] Y. Ju, R.S. Varma, Aqueous N-alkylation of amines using alkyl halides: direct generation of tertiary amines under microwave irradiation, Green Chem. 6 (2004) 219–221. https://doi.org/10.1039/b401620c
[84] Y. Ju, R.S. Varma, Aqueous N-heterocyclization of primary amines and hydrazines with dihalides: microwave-assisted syntheses of N-azacycloalkanes, isoindole, pyrazole, pyrazolidine, and phthalazine derivatives, J. Org. Chem. 71 (2006) 135–141. https://doi.org/10.1002/chin.200620093
[85] Y. Ju, R.S. Varma, Microwave-assisted cyclocondensation of hydrazine derivatives with alkyl dihalides or ditosylates in aqueous media: syntheses of pyrazole, pyrazolidine and phthalazine derivatives, Tetrahedron Lett. 46 (2005) 6011–6014. https://doi.org/10.1016/j.tetlet.2005.07.018
[86] Y. Ju, R.S. Varma, An efficient and simple aqueous N-heterocyclization of aniline derivatives: microwave-assisted synthesis of N-aryl azacycloalkanes, Org. Lett. 7 (2005) 2409–2411. https://doi.org/10.1021/ol050683t
[87] S.M. Roberts, N.J. Turner, A.J. Willetts, M.K. Turner, Introduction to biocatalysis using enzymes and microorganisms, Cambridge University Press, 1995.
[88] Y. Hayashi, T. Urushima, S. Aratake, T. Okano, K. Obi, Organic solvent-free, enantio-and diastereoselective, direct Mannich reaction in the presence of water, Org. Lett. 10 (2008) 21–24. https://doi.org/10.1021/ol702489k
[89] S. Luo, X. Mi, S. Liu, H. Xu, J.-P. Cheng, Surfactant-type asymmetric organocatalyst: organocatalytic asymmetric Michael addition to nitrostyrenes in water, Chem. Commun. (2006) 3687–3689. https://doi.org/10.1039/b607846j
[90] K. Kacprzak, Efficient one-pot synthesis of 1, 2, 3-triazoles from benzyl and alkyl halides, Synlett. 2005 (2005) 943–946. https://doi.org/10.1055/s-2005-864809
[91] H.C. Kolb, M.G. Finn, K.B. Sharpless, Click chemistry: diverse chemical function from a few good reactions, Angew. Chem. Int. Ed. 40 (2001) 2004–2021. https://doi.org/10.1002/1521-3773(20010601)40:11%3C2004::aid-anie2004%3E3.0.co;2-5
[92] W. Pang, S. Zhu, H. Jiang, S. Zhu, A novel synthesis of 5-perfluorophenyl 4,5-dihydro-1H-pyrazoles in THF or water, Journal of Fluorine Chemistry, 128 (2007) 1379–1384. https://doi.org/10.1016/j.jfluchem.2007.06.010
[93] S.-J. Tu, B. Jiang, J.-Y. Zhang, R.-H. Jia, Y. Zhang, C.-S. Yao, Efficient and direct synthesis of poly-substituted indeno [1,2-b] quinolines assisted by p-toluene sulfonic acid using high-temperature water and microwave heating via one-pot, three-component reaction, Org. Biomol. Chem. 4 (2006) 3980–3985. https://doi.org/10.1039/b611462h
[94] M. Mayer, P.T. Lang, S. Gerber, P.B. Madrid, I.G. Pinto, R.K. Guy, T.L. James, Synthesis and testing of a focused phenothiazine library for binding to HIV-1 TAR RNA, Chem. Biol. 13 (2006) 993–1000. https://doi.org/10.1016/j.chembiol.2006.07.009
[95] M.C. Pirrung, K. Das Sarma, Aqueous medium effects on multi-component reactions, Tetrahedron, 61 (2005) 11456-11472. https://doi.org/10.1016/j.tet.2005.08.068
[96] M.C. Pirrung, K. Das Sarma, Multicomponent reactions are accelerated in water, J. Am. Chem. Soc. 126 (2004) 444–445. https://doi.org/10.1021/ja038583a
[97] Y. Hayashi, S. Samanta, H. Gotoh, H. Ishikawa, Asymmetric Diels-Alder reactions of α, β‐unsaturated aldehydes catalyzed by a diarylprolinol silyl ether salt in the presence of water, Angew. Chem. Int. Ed. 120 (2008) 6736–6739. https://doi.org/10.1002/ange.200801408
[98] H. Firouzabadi, N. Iranpoor, M. Gholinejad, 2-Aminophenyl diphenylphosphinite as a new ligand for heterogeneous palladium-catalyzed Heck–Mizoroki reactions in water in the absence of any organic co-solvent, Tetrahedron, 65 (2009) 7079–7084. https://doi.org/10.1016/j.tet.2009.06.081
[99] D. Font, S. Sayalero, A. Bastero, C. Jimeno, M.A. Pericas, Toward an artificial aldolase, Org. Lett. 10 (2008) 337-340. https://doi.org/10.1021/ol702901z
[100] M. Berthod, C. Saluzzo, G. Mignani, M. Lemaire, 4,4′ and 5,5′-DiamBINAP as a hydrosoluble chiral ligand: syntheses and use in Ru (II) asymmetric biphasic catalytic hydrogenation, Tetrahedron: Asymmetry, 15 (2004) 573-575. https://doi.org/10.1016/j.tetasy.2003.12.033
[101] B.H. Lipshutz, S. Ghorai, PQS: A new platform for micellar catalysis. RCM reactions in water, with catalyst recycling, Org. Lett. 11 (2009) 705–708. https://doi.org/10.1021/ol8027829
[102] Y. Usui, K. Sato, M. Tanaka, catalytic dihydroxylation of olefins with hydrogen peroxide: An organic‐solvent‐and metal‐free system, Angew. Chem. Int. Ed. 42 (2003) 5623–5625. https://doi.org/10.1002/anie.200352568
[103] S. Iimura, K. Manabe, S. Kobayashi, Hydrophobic polymer-supported scandium catalyst for carbon–carbon bond-forming reactions in water, Tetrahedron, 60 (2004) 7673–7678. https://doi.org/10.1016/j.tet.2004.06.083
[104] K. Yamaguchi, M. Matsushita, N. Mizuno, Efficient hydration of nitriles to amides in water, catalyzed by ruthenium hydroxide supported on alumina, Angew. Chem. Int. Ed. 43 (2004) 1576–1580. https://doi.org/10.1002/anie.200353461
[105] W. Solodenko, U. Schoen, J. Messinger, A. Glinschert, A. Kirschning, Microwave-assisted Suzuki-Miyaura reactions with an insoluble pyridine-aldoxime Pd-catalyst, Synlett. 2004 (2004) 1699–1702. https://doi.org/10.1055/s-2004-829546
[106] Z. Zheng, B.L. Perkins, B. Ni, Diarylprolinol silyl ether salts as new, efficient, water-soluble, and recyclable organocatalysts for the asymmetric Michael addition on water, J. Am. Chem. Soc. 132 (2009) 50–51. https://doi.org/10.1002/chin.201028025