Application of Ionic Liquids in Gas Separation Membranes

$20.00

Application of Ionic Liquids in Gas Separation Membranes

M. Zia-ul-Mustafa, Hafiz Abdul Mannan, Hilmi Mukhtar, Rizwan Nasir, Dzeti Farhah Mohshim, NAHM Nordin

Gas emission is a direct result of huge industrial progresses since the last century. To overcome the hazardous effects of these acid gases, it is crucial to separate and capture these unwanted gases. Ionic liquids owing to negligible vapor pressure, high thermal resistance and widespread electrochemical stability have found their application in gas separation membranes. In this chapter, a comprehensive summary of the applications of ionic liquids in gas separation membranes is described. The main classifications of ionic liquid membranes (ILMs) such as supported ionic liquid membranes (SILMs), ionic liquid polymeric membranes (ILPMs) and ionic liquid mixed matrix membranes (ILMMMs) and their applications for the separation of various mixed gases systems have been discussed in detail.

Keywords
Ionic Liquids, Acid Gas Separation Membranes, Membrane Types, Rubbery ILPMs, ILMs

Published online 5/25/2019, 25 pages

Citation: M. Zia-ul-Mustafa, Hafiz Abdul Mannan, Hilmi Mukhtar, Rizwan Nasir, Dzeti Farhah Mohshim, NAHM Nordin, Application of Ionic Liquids in Gas Separation Membranes, Materials Research Foundations, Vol. 50, pp 320-344, 2019

DOI: https://doi.org/10.21741/9781644900239-10

Part of the book on Industrial Applications of Green Solvents

References
[1] J.L. Anderson, J.K. Dixon, E.J. Maginn, J.F. Brennecke, Measurement of SO2 solubility in ionic liquids, The J. Phys. Chem. B 110 (2006) 15059-15062. https://doi.org/10.1021/jp063547u
[2] J. Erisman, A. Bleeker, J. Galloway, M. Sutton, Reduced nitrogen in ecology and the environment, Environ. Pollut. 150 (2007) 140-149. https://doi.org/10.1016/j.envpol.2007.06.033
[3] I. Statistics, CO2 emissions from fuel combustion-highlights, IEA, Paris http://www. iea. org/CO2 highlights/CO2 highlights. pdf. Cited July (2011). https://doi.org/10.1787/data-00433-en
[4] J.E. Bara, T.K. Carlisle, C.J. Gabriel, D. Camper, A. Finotello, D.L. Gin, R.D. Noble, Guide to CO2 separations in imidazolium-based room-temperature ionic liquids, Ind. Eng. Chem. Res. 48 (2009) 2739-2751. https://doi.org/10.1021/ie8016237
[5] K.N. Ruckart, R.A. O’Brien, S.M. Woodard, K.N. West, T.G. Glover, Porous solids impregnated with task-specific ionic liquids as composite sorbents, The J. Phys. Chem. C 119 (2015) 20681-20697. https://doi.org/10.1021/acs.jpcc.5b04646
[6] W. Qian, J. Texter, F. Yan, Frontiers in poly (ionic liquid) s: syntheses and applications, Chem. Soc. Rev. 46 (2017) 1124-1159. https://doi.org/10.1039/c6cs00620e
[7] P. Walden, “On the Molecular Size and Electrical Conductivity of Some Molten Salts,” News of the Imperial Academy of Sciences. VI serial, 8: 6 (1914), 405-422.
[8] L.A. Blanchard, Z. Gu, J.F. Brennecke, High-pressure phase behavior of ionic liquid/CO2 systems, The J. Phys. Chem. B 105 (2001) 2437-2444. https://doi.org/10.1021/jp003309d
[9] Z. Lei, B. Chen, Y.M. Koo, D.R. MacFarlane, Introduction: Ionic liquids, Chem. Rev. 117 (2017) 6633-6635. https://doi.org/10.1021/acs.chemrev.7b00246
[10] H.A. Mannan, H. Mukhtar, M.S. Shahrun, M.A. Bustam, Z. Man, M.Z.A. Bakar, Effect of [EMIM][Tf2N] ionic liquid on ionic liquid-polymeric membrane (ILPM) for CO2/CH4 separation, Procedia Eng. 148 (2016) 25-29. https://doi.org/10.1016/j.proeng.2016.06.477
[11] D.F. Mohshim, H. Mukhtar, Z. Man, Composite blending of ionic liquid–poly (ether sulfone) polymeric membranes: Green materials with potential for carbon dioxide/methane separation, J. Appl. Polym. Sci. 133 (2016). https://doi.org/10.1002/app.43999
[12] R. Nasir, N.N.R. Ahmad, H. Mukhtar, D.F. Mohshim, Effect of ionic liquid inclusion and amino–functionalized SAPO-34 on the performance of mixed matrix membranes for CO2/CH4 separation, J. Environ. Chem. Eng. 6 (2018) 2363-2368. https://doi.org/10.1016/j.jece.2018.03.032
[13] L.C. Tome, I.M. Marrucho, Ionic liquid-based materials: a platform to design engineered CO2 separation membranes, Chem. Soc. Rev. 45 (2016) 2785-2824. https://doi.org/10.1039/c5cs00510h
[14] K. Simons, K. Nijmeijer, J.E. Bara, R.D. Noble, M. Wessling, How do polymerized room-temperature ionic liquid membranes plasticize during high pressure CO2 permeation?, J. Membr. Sci. 360 (2010) 202-209. https://doi.org/10.1016/j.memsci.2010.05.018
[15] E.D. Bates, R.D. Mayton, I. Ntai, J.H. Davis, CO2 capture by a task-specific ionic liquid, J. Am. Chem. Soc. 124 (2002) 926-927. https://doi.org/10.1021/ja017593d
[16] D. Camper, J.E. Bara, D.L. Gin, R.D. Noble, Room-temperature ionic liquid-amine solutions: Tunable solvents for efficient and reversible capture of CO2, Ind. Eng. Chem. Res. 47 (2008) 8496-8498. https://doi.org/10.1021/ie801002m
[17] J.E. Bara, C.J. Gabriel, S. Lessmann, T.K. Carlisle, A. Finotello, D.L. Gin, R.D. Noble, Enhanced CO2 separation selectivity in oligo (ethylene glycol) functionalized room-temperature ionic liquids, Ind. Eng. Chem. Res. 46 (2007) 5380-5386. https://doi.org/10.1021/ie070437g
[18] R.D. Noble, D.L. Gin, Perspective on ionic liquids and ionic liquid membranes, J. Membr. Sci. 369 (2011) 1-4.
[19] D. Camper, J. Bara, C. Koval, R. Noble, Bulk-fluid solubility and membrane feasibility of Rmim-based room-temperature ionic liquids, Ind. Eng. Chem. Res. 45 (2006) 6279-6283. https://doi.org/10.1021/ie060177n
[20] H. Ohno, M. Yoshizawa, W. Ogihara, Development of new class of ion conductive polymers based on ionic liquids, Electrochim. Acta, 50 (2004) 255-261. https://doi.org/10.1016/j.electacta.2004.01.091
[21] J. Tang, W. Sun, H. Tang, M. Radosz, Y. Shen, Enhanced CO2 absorption of poly (ionic liquid)s, Macromolecules, 38 (2005) 2037-2039. https://doi.org/10.1021/ma047574z
[22] J.E. Bara, S. Lessmann, C.J. Gabriel, E.S. Hatakeyama, R.D. Noble, D.L. Gin, Synthesis and performance of polymerizable room-temperature ionic liquids as gas separation membranes, Ind. Eng. Chem. Res. 46 (2007) 5397-5404. https://doi.org/10.1021/ie0704492
[23] R. Spillman, M. Sherwin, Gas separation membranes: the first decade, Chem. Tech. 20 (1990) 378-384.
[24] G. Lu, J.D. Da Costa, M. Duke, S. Giessler, R. Socolow, R. Williams, T. Kreutz, Inorganic membranes for hydrogen production and purification: a critical review and perspective, Journal of Colloid and Interface Science 314 (2007) 589-603. https://doi.org/10.1016/j.jcis.2007.05.067
[25] J.E. Bara, D.E. Camper, D.L. Gin, R.D. Noble, Room-temperature ionic liquids and composite materials: platform technologies for CO2 capture, Acc. Chem. Res. 43 (2009) 152-159. https://doi.org/10.1021/ar9001747
[26] R.W. Baker, K. Lokhandwala, Natural gas processing with membranes: an overview, Ind. Eng. Chem. Res. 47 (2008) 2109-2121. https://doi.org/10.1021/ie071083w
[27] Z. Dai, R.D. Noble, D.L. Gin, X. Zhang, L. Deng, Combination of ionic liquids with membrane technology: A new approach for CO2 separation, J. Membr. Sci. 497 (2016) 1-20.
[28] C. Cadena, J.L. Anthony, J.K. Shah, T.I. Morrow, J.F. Brennecke, E.J. Maginn, Why is CO2 so soluble in imidazolium-based ionic liquids?, J. Am. Chem. Soc. 126 (2004) 5300-5308. https://doi.org/10.1021/ja039615x
[29] J.E. Bara, E.S. Hatakeyama, D.L. Gin, R.D. Noble, Improving CO2 permeability in polymerized room-temperature ionic liquid gas separation membranes through the formation of a solid composite with a room-temperature ionic liquid, Polym. Adv. Technol. 19 (2008) 1415-1420. https://doi.org/10.1002/pat.1209
[30] J.E. Bara, D.L. Gin, R.D. Noble, Effect of anion on gas separation performance of polymer−room-temperature ionic liquid composite membranes, Ind. Eng. Chem. Res. 47 (2008) 9919-9924. https://doi.org/10.1021/ie801019x
[31] J.E. Bara, R.D. Noble, D.L. Gin, Effect of “Free” cation substituent on gas separation performance of polymer−room-temperature ionic liquid composite membranes, Ind. Eng. Chem. Res. 48 (2009) 4607-4610. https://doi.org/10.1021/ie801897r
[32] G. Zarca, W.J. Horne, I. Ortiz, A. Urtiaga, J.E. Bara, Synthesis and gas separation properties of poly(ionic liquid)-ionic liquid composite membranes containing a copper salt, J. Membr. Sci. 515 (2016) 109-114. https://doi.org/10.1016/j.memsci.2016.05.045
[33] L.C. Tomé, D.C. Guerreiro, R.M. Teodoro, V.D. Alves, I.M. Marrucho, Effect of polymer molecular weight on the physical properties and CO2/N2 separation of pyrrolidinium-based poly(ionic liquid) membranes, J. Membr. Sci. 549 (2018) 267-274. https://doi.org/10.1016/j.memsci.2017.12.019
[34] S.U. Hong, D. Park, Y. Ko, I. Baek, Polymer-ionic liquid gels for enhanced gas transport, Chem. Comm. 0 (2009) 7227-7229. https://doi.org/10.1039/b913746g
[35] P. Uchytil, J. Schauer, R. Petrychkovych, K. Setnickova, S.Y. Suen, Ionic liquid membranes for carbon dioxide–methane separation, J. Membr. Sci. 383 (2011) 262-271. https://doi.org/10.1016/j.memsci.2011.08.061
[36] K. Friess, J.C. Jansen, F. Bazzarelli, P. Izák, V. Jarmarová, M. Kačírková, J. Schauer, G. Clarizia, P. Bernardo, High ionic liquid content polymeric gel membranes: correlation of membrane structure with gas and vapour transport properties, J. Membr. Sci. 415 (2012) 801-809. https://doi.org/10.1016/j.memsci.2012.05.072
[37] J.C. Jansen, G. Clarizia, P. Bernardo, F. Bazzarelli, K. Friess, A. Randová, J. Schauer, D. Kubicka, M. Kacirková, P. Izak, Gas transport properties and pervaporation performance of fluoropolymer gel membranes based on pure and mixed ionic liquids, Sep. Purif. Tech. 109 (2013) 87-97. https://doi.org/10.1016/j.seppur.2013.02.034
[38] L. Hao, P. Li, T. Yang, T.S. Chung, Room temperature ionic liquid/ZIF-8 mixed-matrix membranes for natural gas sweetening and post-combustion CO2 capture, J. Membr. Sci. 436 (2013) 221-231. https://doi.org/10.1016/j.memsci.2013.02.034
[39] H.Z. Chen, P. Li, T.-S. Chung, PVDF/ionic liquid polymer blends with superior separation performance for removing CO2 from hydrogen and flue gas, Int. J. Hydrogen Energy 37 (2012) 11796-11804. https://doi.org/10.1016/j.ijhydene.2012.05.111
[40] P. Scovazzo, Determination of the upper limits, benchmarks, and critical properties for gas separations using stabilized room temperature ionic liquid membranes (SILMs) for the purpose of guiding future research, J. Membr. Sci. 343 (2009) 199-211. https://doi.org/10.1016/j.memsci.2009.07.028
[41] S. Kanehashi, M. Kishida, T. Kidesaki, R. Shindo, S. Sato, T. Miyakoshi, K. Nagai, CO2 separation properties of a glassy aromatic polyimide composite membranes containing high-content 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ionic liquid, J. Membr. Sci. 430 (2013) 211-222. https://doi.org/10.1016/j.memsci.2012.12.003
[42] L. Liang, Q. Gan, P. Nancarrow, Composite ionic liquid and polymer membranes for gas separation at elevated temperatures, J. Membr. Sci. 450 (2014) 407-417. https://doi.org/10.1016/j.memsci.2013.09.033
[43] D.F. Mohshim, H. Mukhtar, Z. Man, Composite blending of ionic liquid–poly(ether sulfone) polymeric membranes: Green materials with potential for carbon dioxide/methane separation, J. Appl. Polym. Sci. 133 (2016) 43999. https://doi.org/10.1002/app.43999
[44] S.C. Lu, A.L. Khan, I.F.J. Vankelecom, Polysulfone-ionic liquid based membranes for CO2/N2 separation with tunable porous surface features, J. Membr. Sci. 518 (2016) 10-20. https://doi.org/10.1016/j.memsci.2016.06.031
[45] R. Ur Rehman, S. Rafiq, N. Muhammad, A.L. Khan, A. Ur Rehman, L. Ting Ting, M. Saeed, F. Jamil, M. Ghauri, X. Gu, Development of ethanolamine-based ionic liquid membranes for efficient CO2/CH4 separation, J. Appl. Polymer. Sci. 134 (2017) 45395. https://doi.org/10.1002/app.45395
[46] P. Bernardo, J.C. Jansen, F. Bazzarelli, F. Tasselli, A. Fuoco, K. Friess, P. Izák, V. Jarmarová, M. Kačírková, G. Clarizia, Gas transport properties of Pebax®/room temperature ionic liquid gel membranes, Sep. Purif. Technol. 97 (2012) 73-82. https://doi.org/10.1016/j.seppur.2012.02.041
[47] Y. Qiu, J. Ren, D. Zhao, H. Li, M. Deng, Poly(amide-6-b-ethylene oxide)/[Bmim][Tf2N] blend membranes for carbon dioxide separation, Journal of Energy Chemistry 25 (2016) 122-130. https://doi.org/10.1016/j.jechem.2015.10.009
[48] E. Ghasemi Estahbanati, M. Omidkhah, A. Ebadi Amooghin, Preparation and characterization of novel Ionic liquid/Pebax membranes for efficient CO2/light gases separation, Journal of Industrial and Engineering Chemistry 51 (2017) 77-89. https://doi.org/10.1016/j.jiec.2017.02.017
[49] H.R. Mahdavi, N. Azizi, M. Arzani, T. Mohammadi, Improved CO2/CH4 separation using a nanocomposite ionic liquid gel membrane, Journal of Natural Gas Science and Engineering 46 (2017) 275-288. https://doi.org/10.1016/j.jngse.2017.07.024
[50] W. Fam, J. Mansouri, H. Li, V. Chen, Improving CO2 separation performance of thin film composite hollow fiber with Pebax®1657/ionic liquid gel membranes, J. Membr. Sci. 537 (2017) 54-68. https://doi.org/10.1016/j.memsci.2017.05.011
[51] H. Rabiee, A. Ghadimi, T. Mohammadi, Gas transport properties of reverse-selective poly(ether-b-amide6)/[Emim][BF4] gel membranes for CO2/light gases separation, J. Membr. Sci. 476 (2015) 286-302. https://doi.org/10.1016/j.memsci.2014.11.037
[52] M. Li, X. Zhang, S. Zeng, L. bai, H. Gao, J. Deng, Q. Yang, S. Zhang, Pebax-based composite membranes with high gas transport properties enhanced by ionic liquids for CO2 separation, RSC Adv. 7 (2017) 6422-6431. https://doi.org/10.1039/c6ra27221e
[53] A. Jomekian, B. Bazooyar, R.M. Behbahani, T. Mohammadi, A. Kargari, Ionic liquid-modified Pebax® 1657 membrane filled by ZIF-8 particles for separation of CO2 from CH4, N2 and H2, J. Membr. Sci. 524 (2017) 652-662. https://doi.org/10.1016/j.memsci.2016.11.065
[54] Y. Gu, E.L. Cussler, T.P. Lodge, ABA-triblock copolymer ion gels for CO2 separation applications, J. Membr. Sci. 423-424 (2012) 20-26. https://doi.org/10.1016/j.memsci.2012.07.011
[55] L.C. Branco, J.G. Crespo, C.A. Afonso, Studies on the selective transport of organic compounds by using ionic liquids as novel supported liquid membranes, Chem. Eur. J. 8 (2002) 3865-3871. https://doi.org/10.1002/1521-3765(20020902)8:17<3865::aid-chem3865>3.0.co;2-l
[56] R. Kreiter, J.P. Overbeek, L.A. Correia, J.F. Vente, Pressure resistance of thin ionic liquid membranes using tailored ceramic supports, J. Membr. Sci. 370 (2011) 175-178. https://doi.org/10.1016/j.memsci.2010.12.024
[57] S. Barghi, M. Adibi, D. Rashtchian, An experimental study on permeability, diffusivity, and selectivity of CO2 and CH4 through [bmim][PF6] ionic liquid supported on an alumina membrane: Investigation of temperature fluctuations effects, J. Membr. Sci. 362 (2010) 346-352. https://doi.org/10.1016/j.memsci.2010.06.047
[58] E. Santos, J. Albo, A. Irabien, Acetate based supported ionic liquid membranes (SILMs) for CO2 separation: influence of the temperature, J. Membr. Sci. 452 (2014) 277-283. https://doi.org/10.1016/j.memsci.2013.10.024
[59] J. Albo, T. Yoshioka, T. Tsuru, Porous Al2O3/TiO2 tubes in combination with 1-ethyl-3-methylimidazolium acetate ionic liquid for CO2/N2 separation, Sep. Purif. Tech. 122 (2014) 440-448. https://doi.org/10.1016/j.seppur.2013.11.024
[60] L.Z. Liang, Q. Gan, P. Nancarrow, A study on permeabilities and selectivities of small-molecule gases for composite ionic liquid and polymer membranes, App. Mech. Mater. 448-453 (2013) 765-770. https://doi.org/10.4028/www.scientific.net/amm.448-453.765
[61] L.C. Tomé, D.J. Patinha, C.S. Freire, L.P.N. Rebelo, I.M. Marrucho, CO2 separation applying ionic liquid mixtures: the effect of mixing different anions on gas permeation through supported ionic liquid membranes, RSC Adv. 3 (2013) 12220-12229. https://doi.org/10.1039/c3ra41269e
[62] Y.C. Hudiono, T.K. Carlisle, J.E. Bara, Y. Zhang, D.L. Gin, R.D. Noble, A three-component mixed-matrix membrane with enhanced CO2 separation properties based on zeolites and ionic liquid materials, J. Membr. Sci. 350 (2010) 117-123. https://doi.org/10.1016/j.memsci.2009.12.018
[63] P. Scovazzo, D. Havard, M. McShea, S. Mixon, D. Morgan, Long-term, continuous mixed-gas dry fed CO2/CH4 and CO2/N2 separation performance and selectivities for room temperature ionic liquid membranes, J. Membr. Sci. 327 (2009) 41-48. https://doi.org/10.1016/j.memsci.2008.10.056
[64] A.B. Pereiro, L.C. Tomé, S. Martinho, L.P.N. Rebelo, I.M. Marrucho, Gas permeation properties of fluorinated ionic liquids, Ind. Eng. Chem. Res. 52 (2013) 4994-5001. https://doi.org/10.1021/ie4002469
[65] L.C. Tomé, C. Florindo, C.S. Freire, L.P.N. Rebelo, I.M. Marrucho, Playing with ionic liquid mixtures to design engineered CO2 separation membranes, Phys. Chem. Chem. Phys. 16 (2014) 17172-17182. https://doi.org/10.1039/c4cp01434k
[66] J. Grünauer, V. Filiz, S. Shishatskiy, C. Abetz, V. Abetz, Scalable application of thin film coating techniques for supported liquid membranes for gas separation made from ionic liquids, J. Membr. Sci. 518 (2016) 178-191. https://doi.org/10.1016/j.memsci.2016.07.005
[67] J. Grünauer, S. Shishatskiy, C. Abetz, V. Abetz, V. Filiz, Ionic liquids supported by isoporous membranes for CO2/N2 gas separation applications, J. Membr. Sci. 494 (2015) 224-233. https://doi.org/10.1016/j.memsci.2015.07.054
[68] S. Kulprathipanja, R.W. Neuzil, N.N. Li, Separation of fluids by means of mixed matrix membranes, Google Patents, 1988.
[69] J.E. Bara, D.L. Gin, R.D. Noble, Effect of anion on gas separation performance of polymer− room-temperature ionic liquid composite membranes, Ind. Eng. Chem. Res. 47 (2008) 9919-9924. https://doi.org/10.1021/ie801019x
[70] Y.C. Hudiono, T.K. Carlisle, A.L. LaFrate, D.L. Gin, R.D. Noble, Novel mixed matrix membranes based on polymerizable room-temperature ionic liquids and SAPO-34 particles to improve CO2 separation, J. Membr. Sci. 370 (2011) 141-148. https://doi.org/10.1016/j.memsci.2011.01.012
[71] R.D.N. C. A. Oral, S. B. Tantekin-Ersolmaz,, Ternarymixed-matrix membranes containing room temperature ionicliquids, Proceedings of the North Am.Membr.Soc.Conference (NAMS ’11), (2011).
[72] X. Zhou, M.M. Obadia, S.R. Venna, E.A. Roth, A. Serghei, D.R. Luebke, C. Myers, Z. Chang, R. Enick, E. Drockenmuller, Highly cross-linked polyether-based 1,2,3-triazolium ion conducting membranes with enhanced gas separation properties, Eur. Polym. J. 84 (2016) 65-76. https://doi.org/10.1016/j.eurpolymj.2016.09.001
[73] P.T. Nguyen, B.A. Voss, E.F. Wiesenauer, D.L. Gin, R.D. Noble, Physically gelled room-temperature ionic liquid-based composite membranes for CO2/N2 separation: effect of composition and thickness on membrane properties and performance, Ind. Eng. Chem. Res. 52 (2012) 8812-8821. https://doi.org/10.1021/ie302352r
[74] H. Vinh-Thang, S. Kaliaguine, Predictive models for mixed-matrix membrane performance: a review, Chem. Rev. 113 (2013) 4980-5028. https://doi.org/10.1021/cr3003888
[75] A.C. Balazs, T. Emrick, T.P. Russell, Nanoparticle polymer composites: where two small worlds meet, Science 314 (2006) 1107-1110. https://doi.org/10.1126/science.1130557
[76] T.H. Bae, J.S. Lee, W. Qiu, W.J. Koros, C.W. Jones, S. Nair, A high-performance gas-separation membrane containing submicrometer-sized metal–organic framework crystals, Angew. Chem. Int. Ed. 49 (2010) 9863-9866. https://doi.org/10.1002/anie.201006141