Carbon-Based Nanomaterials for Alcohol Oxidation

$20.00

Carbon-Based Nanomaterials for Alcohol Oxidation

D. Yang

Carbon-based porous materials with a high specific surface area are extensively used as catalyst support in direct alcohol fuel cells to improve the efficiency of catalyst nanoparticles. New types of carbon-based nanomaterials such as carbon nanotubes, mesoporous carbon, nanodiamond, and graphene are of great interest due to their tunable mesoporosity, high surface areas, and good electrical conductivity. Furthermore, they possess suitable anchoring sites for catalyst nanoparticles and have the potential to replace carbon blacks with improved stability. This chapter is devoted to reviewing the recent advances in the preparation, characterization and performance evaluation of these new types of the catalyst support.

Keywords
Alcohol Fuel Cells, Carbon Support, Electrocatalysts, Carbon Blacks, Graphene, Mesoporous Carbon, Platinum Nanoparticles, Carbon Nanotubes, PtRu Nanoparticles, Direct Methanol Fuel Cells

Published online 5/5/2019, 24 pages

Citation: D. Yang, Carbon-Based Nanomaterials for Alcohol Oxidation, Materials Research Foundations, Vol. 49, pp 79-102, 2019

DOI: https://doi.org/10.21741/9781644900192-2

Part of the book on Nanomaterials for Alcohol Fuel Cells

References
[1] S. Surampudi, S. R. Narayanan, E. Vamos, H. Frank, G. Halpert, A. LaConti, J. Kosek, G. K. S. Prakash, & G. A. Olah, Advances in direct oxidation methanol fuel cells. Journal of Power Sources, 47 (1994) 377–385. https://doi.org/10.1016/0378-7753(94)87016-0.
[2] S. Shahgaldi & J. Hamelin, Stability study of ultra-low Pt thin film on TiO 2 –C core-shell structure and TiO 2 encapsulated in carbon nanospheres as cathode catalyst in PEMFC. Fuel, 150 (2015) 645–655. https://doi.org/10.1016/j.fuel.2015.02.002.
[3] M. V. Martínez-Huerta & M. J. Lázaro, Electrocatalysts for low temperature fuel cells. Catalysis Today, 285 (2017) 3–12. https://doi.org/10.1016/j.cattod.2017.02.015.
[4] I. Katsounaros, S. Cherevko, A. R. Zeradjanin, & K. J. J. Mayrhofer, Oxygen Electrochemistry as a Cornerstone for Sustainable Energy Conversion. Angewandte Chemie International Edition, 53 (2014) 102–121. https://doi.org/10.1002/anie.201306588.
[5] H. Schulenburg, B. Schwanitz, N. Linse, G. G. Scherer, A. Wokaun, J. Krbanjevic, R. Grothausmann, & I. Manke, 3D Imaging of Catalyst Support Corrosion in Polymer Electrolyte Fuel Cells. The Journal of Physical Chemistry C, 115 (2011) 14236–14243. https://doi.org/10.1021/jp203016u.
[6] S. Shahgaldi & J. Hamelin, Improved carbon nanostructures as novel catalyst support in the cathode side of PEMFC: a critical review. Carbon, 94 (2015) 705–728. https://doi.org/10.1016/j.carbon.2015.07.055.
[7] Z. Liu, L. Hong, & S. W. Tay, Preparation and characterization of carbon-supported Pt, PtSnO2 and PtRu nanoparticles for direct methanol fuel cells. Materials Chemistry and Physics, 105 (2007) 222–228. https://doi.org/10.1016/j.matchemphys.2007.04.045.
[8] C.-H. Wang, H.-Y. Du, Y.-T. Tsai, C.-P. Chen, C.-J. Huang, L. C. Chen, K. H. Chen, & H.-C. Shih, High performance of low electrocatalysts loading on CNT directly grown on carbon cloth for DMFC. Journal of Power Sources, 171 (2007) 55–62. https://doi.org/10.1016/j.jpowsour.2006.12.028.
[9] Y. Zhao, L. Fan, H. Zhong, Y. Li, & S. Yang, Platinum Nanoparticle Clusters Immobilized on Multiwalled Carbon Nanotubes: Electrodeposition and Enhanced Electrocatalytic Activity for Methanol Oxidation. Advanced Functional Materials, 17 (2007) 1537–1541. https://doi.org/10.1002/adfm.200600416.
[10] L. V. Kumar, S. Addo Ntim, O. Sae-Khow, C. Janardhana, V. Lakshminarayanan, & S. Mitra, Electro-catalytic activity of multiwall carbon nanotube-metal (Pt or Pd) nanohybrid materials synthesized using microwave-induced reactions and their possible use in fuel cells. Electrochimica Acta, 83 (2012) 40–46. https://doi.org/10.1016/j.electacta.2012.07.098.
[11] X. Geng, J. Jing, Y. Cen, R. Datta, & J. Liang, In Situ Synthesis and Characterization of Polyethyleneimine-Modified Carbon Nanotubes Supported PtRu Electrocatalyst for Methanol Oxidation. Journal of Nanomaterials, 2015 (2015) 1–10. https://doi.org/10.1155/2015/296589.
[12] X. Hu, T. Wang, L. Wang, S. Guo, & S. Dong, A General Route to Prepare One- and Three-Dimensional Carbon Nanotube/Metal Nanoparticle Composite Nanostructures. Langmuir, 23 (2007) 6352–6357. https://doi.org/10.1021/la063246b.
[13] Y. Suda, Y. Shimizu, M. Ozaki, H. Tanoue, H. Takikawa, H. Ue, K. Shimizu, & Y. Umeda, Electrochemical properties of fuel cell catalysts loaded on carbon nanomaterials with different geometries. Materials Today Communications, 3 (2015) 96–103. https://doi.org/10.1016/j.mtcomm.2015.02.003.
[14] M. Okada, Y. Konta, & N. Nakagawa, Carbon nano-fiber interlayer that provides high catalyst utilization in a direct methanol fuel cell. Journal of Power Sources, 185 (2008) 711–716. https://doi.org/10.1016/j.jpowsour.2008.08.026.
[15] C. Zhou, Z. Liu, X. Du, D. Mitchell, Y.-W. Mai, Y. Yan, & S. Ringer, Hollow nitrogen-containing core/shell fibrous carbon nanomaterials as support to platinum nanocatalysts and their TEM tomography study. Nanoscale Research Letters, 7 (2012) 165. https://doi.org/10.1186/1556-276X-7-165.
[16] T. Yoshitake, Y. Shimakawa, S. Kuroshima, H. Kimura, T. Ichihashi, Y. Kubo, D. Kasuya, K. Takahashi, F. Kokai, M. Yudasaka, & S. Iijima, Preparation of fine platinum catalyst supported on single-wall carbon nanohorns for fuel cell application. Physica B: Condensed Matter, 323 (2002) 124–126. https://doi.org/10.1016/S0921-4526(02)00871-2.
[17] T. Hyeon, S. Han, Y.-E. Sung, K.-W. Park, & Y.-W. Kim, High-Performance Direct Methanol Fuel Cell Electrodes using Solid-Phase-Synthesized Carbon Nanocoils. Angewandte Chemie International Edition, 42 (2003) 4352–4356. https://doi.org/10.1002/anie.200250856.
[18] M. Sevilla, G. Lota, & A. B. Fuertes, Saccharide-based graphitic carbon nanocoils as supports for PtRu nanoparticles for methanol electrooxidation. Journal of Power Sources, 171 (2007) 546–551. https://doi.org/10.1016/j.jpowsour.2007.05.096.
[19] Z. Hamoudi, A. Brahim, M. A. El Khakani, & M. Mohamedi, Electroanalytical Study of Methanol Oxidation and Oxygen Reduction at Carbon Nanohorns-Pt Nanostructured Electrodes. Electroanalysis, 25 (2013) 538–545. https://doi.org/10.1002/elan.201200572.
[20] J. Wu, F. Hu, X. Hu, Z. Wei, & P. K. Shen, Improved kinetics of methanol oxidation on Pt/hollow carbon sphere catalysts. Electrochimica Acta, 53 (2008) 8341–8345. https://doi.org/10.1016/j.electacta.2008.06.051.
[21] G. Álvarez, F. Alcaide, O. Miguel, L. Calvillo, M. J. Lázaro, J. J. Quintana, J. C. Calderón, & E. Pastor, Technical electrodes catalyzed with PtRu on mesoporous ordered carbons for liquid direct methanol fuel cells. Journal of Solid State Electrochemistry, 14 (2010) 1027–1034. https://doi.org/10.1007/s10008-009-0913-3.
[22] L. Calvillo, M. J. Lázaro, E. García-Bordejé, R. Moliner, P. L. Cabot, I. Esparbé, E. Pastor, & J. J. Quintana, Platinum supported on functionalized ordered mesoporous carbon as an electrocatalyst for direct methanol fuel cells. Journal of Power Sources, 169 (2007) 59–64. https://doi.org/10.1016/j.jpowsour.2007.01.042.
[23] V. Celorrio, D. Sebastián, L. Calvillo, A. B. García, D. J. Fermin, & M. J. Lázaro, Influence of thermal treatments on the stability of Pd nanoparticles supported on graphitized ordered mesoporous carbons. International Journal of Hydrogen Energy, 41 (2016) 19570–19578. https://doi.org/10.1016/j.ijhydene.2016.05.271.
[24] L. Calvillo, M. Gangeri, S. Perathoner, G. Centi, R. Moliner, & M. J. Lázaro, Synthesis and performance of platinum supported on ordered mesoporous carbons as a catalyst for PEM fuel cells: Effect of the surface chemistry of the support. International Journal of Hydrogen Energy, 36 (2011) 9805–9814. https://doi.org/10.1016/j.ijhydene.2011.03.023.
[25] J. Zeng, C. Francia, C. Gerbaldi, V. Baglio, S. Specchia, A. S. Aricò, & P. Spinelli, Hybrid ordered mesoporous carbons doped with tungsten trioxide as supports for Pt electrocatalysts for the methanol oxidation reaction. Electrochimica Acta, 94 (2013) 80–91. https://doi.org/10.1016/j.electacta.2013.01.139.
[26] C. Alegre, L. Calvillo, R. Moliner, J. A. González-Expósito, O. Guillén-Villafuerte, M. V. M. Huerta, E. Pastor, & M. J. Lázaro, Pt and PtRu electrocatalysts supported on carbon xerogels for direct methanol fuel cells. Journal of Power Sources, 196 (2011) 4226–4235. https://doi.org/10.1016/j.jpowsour.2010.10.049.
[27] C. Alegre, D. Sebastián, M. E. Gálvez, R. Moliner, & M. J. Lázaro, Sulfurized carbon xerogels as Pt support with enhanced activity for fuel cell applications. Applied Catalysis B: Environmental, 192 (2016) 260–267. https://doi.org/10.1016/j.apcatb.2016.03.070.
[28] K. S. Novoselov, A. K. Geim, S. V Morozov, D. Jiang, Y. Zhang, S. V Dubonos, I. V Grigorieva, & A. A. Firsov, Electric Field Effect in Atomically Thin Carbon Films. Science, 306 (2004) 666–669. https://doi.org/10.1126/science.1102896.
[29] E. Antolini, Graphene as new carbon support for low-temperature fuel cell catalysts. Applied Catalysis B: Environmental, 123–124 (2012) 52–68. https://doi.org/10.1016/j.apcatb.2012.04.022.
[30] G. Wu, A. Santandreu, W. Kellogg, S. Gupta, O. Ogoke, H. Zhang, H.-L. Wang, & L. Dai, Carbon nanocomposite catalysts for oxygen reduction and evolution reactions: From nitrogen doping to transition-metal addition. Nano Energy, 29 (2016) 83–110. https://doi.org/10.1016/j.nanoen.2015.12.032.
[31] W. Gao, G. Wu, M. T. Janicke, D. A. Cullen, R. Mukundan, J. K. Baldwin, E. L. Brosha, C. Galande, P. M. Ajayan, K. L. More, A. M. Dattelbaum, & P. Zelenay, Ozonated Graphene Oxide Film as a Proton-Exchange-Membrane. Angewandte Chemie International Edition, 53 (2014) 3588–3593. https://doi.org/10.1002/anie.201310908.
[32] W. Zhao, X. Zhou, J. Chen, & X. Lu, Controllable Electrodeposition of Platinum Nanoparticles on Graphene Nanosheet for Methanol Oxidation Reaction. Journal of Cluster Science, 24 (2013) 739–748. https://doi.org/10.1007/s10876-013-0569-0.
[33] N. Soin, S. S. Roy, T. H. Lim, & J. A. D. McLaughlin, Microstructural and electrochemical properties of vertically aligned few layered graphene (FLG) nanoflakes and their application in methanol oxidation. Materials Chemistry and Physics, 129 (2011) 1051–1057. https://doi.org/10.1016/j.matchemphys.2011.05.063.
[34] S. Liu, L. Wang, J. Tian, W. Lu, Y. Zhang, X. Wang, & X. Sun, Microwave-assisted rapid synthesis of Pt/graphene nanosheet composites and their application for methanol oxidation. Journal of Nanoparticle Research, 13 (2011) 4731–4737. https://doi.org/10.1007/s11051-011-0440-x.
[35] B. Luo, X. Yan, S. Xu, & Q. Xue, Polyelectrolyte functionalization of graphene nanosheets as support for platinum nanoparticles and their applications to methanol oxidation. Electrochimica Acta, 59 (2012) 429–434. https://doi.org/10.1016/j.electacta.2011.10.103.
[36] O. Akyıldırım, G. Kotan, M. L. Yola, T. Eren, & N. Atar, Fabrication of bimetallic Pt/Pd nanoparticles on 2-thiolbenzimidazole functionalized reduced graphene oxide for methanol oxidation. Ionics, 22 (2016) 593–600. https://doi.org/10.1007/s11581-015-1572-2.
[37] Y. Liu, Y. Xia, H. Yang, Y. Zhang, M. Zhao, & G. Pan, Facile preparation of high-quality Pt/reduced graphene oxide nanoscrolls for methanol oxidation. Nanotechnology, 24 (2013) 235401. https://doi.org/10.1088/0957-4484/24/23/235401.
[38] Z. Li, M. Ruan, L. Du, G. Wen, C. Dong, & H.-W. Li, Graphene nanomaterials supported palladium nanoparticles as nanocatalysts for electro-oxidation of methanol. Journal of Electroanalytical Chemistry, 805 (2017) 47–52. https://doi.org/10.1016/j.jelechem.2017.10.015.
[39] B. Su, G. Wu, C. J. Yang, Z. Zhuang, X. Wang, X. Chen, & X. Chen, Platinum nanoflowers supported on graphene oxide nanosheets: Their green synthesis, growth mechanism, and advanced electrocatalytic properties for methanol oxidation. Journal of Materials Chemistry, 22 (2012) 11284–11289. https://doi.org/10.1039/c2jm31133j.
[40] Y. Hu, H. Zhang, P. Wu, H. Zhang, B. Zhou, & C. Cai, Bimetallic Pt-Au nanocatalysts electrochemically deposited on graphene and their electrocatalytic characteristics towards oxygen reduction and methanol oxidation. Physical Chemistry Chemical Physics, 13 (2011) 4083–4094. https://doi.org/10.1039/c0cp01998d.
[41] S. Yang, F. Zhang, C. Gao, J. Xia, L. Lu, & Z. Wang, A sandwich-like PtCo-graphene/carbon dots/graphene catalyst for efficient methanol oxidation. Journal of Electroanalytical Chemistry, 802 (2017) 27–32. https://doi.org/10.1016/j.jelechem.2017.08.027.
[42] G. Siné, I. Duo, B. El Roustom, G. Fóti, & C. Comninellis, Deposition of clusters and nanoparticles onto boron-doped diamond electrodes for electrocatalysis. Journal of Applied Electrochemistry, 36 (2006) 847–862. https://doi.org/10.1007/s10800-006-9159-2.
[43] G. R. Salazar-Banda, K. I. B. Eguiluz, & L. A. Avaca, Boron-doped diamond powder as catalyst support for fuel cell applications. Electrochemistry Communications, 9 (2007) 59–64. https://doi.org/10.1016/j.elecom.2006.08.038.
[44] G. R. Salazar-Banda, H. B. Suffredini, M. L. Calegaro, S. T. Tanimoto, & L. A. Avaca, Sol–gel-modified boron-doped diamond surfaces for methanol and ethanol electro-oxidation in acid medium. Journal of Power Sources, 162 (2006) 9–20. https://doi.org/10.1016/j.jpowsour.2006.06.045.
[45] G. Siné, D. Smida, M. Limat, G. Fóti, & C. Comninellis, Microemulsion Synthesized Pt∕Ru∕Sn Nanoparticles on BDD for Alcohol Electro-oxidation. Journal of The Electrochemical Society, 154 (2007) B170–B174. https://doi.org/10.1149/1.2400602.
[46] H. Huang & X. Wang, Recent progress on carbon-based support materials for electrocatalysts of direct methanol fuel cells. J. Mater. Chem. A, 2 (2014) 6266–6291. https://doi.org/10.1039/C3TA14754A.
[47] T. Maiyalagan, Synthesis and electrocatalytic activity of methanol oxidation on nitrogen-containing carbon nanotubes supported Pt electrodes. Applied Catalysis B: Environmental, 80 (2008) 286–295. https://doi.org/10.1016/j.apcatb.2007.11.033.
[48] R. Chetty, S. Kundu, W. Xia, M. Bron, W. Schuhmann, V. Chirila, W. Brandl, T. Reinecke, & M. Muhler, PtRu nanoparticles supported on nitrogen-doped multiwalled carbon nanotubes as a catalyst for methanol electrooxidation. Electrochimica Acta, 54 (2009) 4208–4215. https://doi.org/10.1016/j.electacta.2009.02.073.
[49] H. Y. Du, C. H. Wang, H. C. Hsu, S. T. Chang, U. S. Chen, S. C. Yen, L. C. Chen, H. C. Shih, & K. H. Chen, Controlled platinum nanoparticles uniformly dispersed on nitrogen-doped carbon nanotubes for methanol oxidation. Diamond and Related Materials, 17 (2008)535-541. https://doi.org/10.1016/j.diamond.2008.01.116.
[50] G. Wu, R. Swaidan, D. Li, & N. Li, Enhanced methanol electro-oxidation activity of PtRu catalysts supported on heteroatom-doped carbon. Electrochimica Acta, 53 (2008) 7622–7629. https://doi.org/10.1016/j.electacta.2008.03.082.
[51] R. Lv, T. Cui, M.-S. Jun, Q. Zhang, A. Cao, D. S. Su, Z. Zhang, S.-H. Yoon, J. Miyawaki, I. Mochida, & F. Kang, Open-Ended, N-Doped Carbon Nanotube-Graphene Hybrid Nanostructures as High-Performance Catalyst Support. Advanced Functional Materials, 21 (2011) 999–1006. https://doi.org/10.1002/adfm.201001602.