Applications of Molecularly Imprinted Polymers to Genobiosensors


Applications of Molecularly Imprinted Polymers to Genobiosensors

Mayank Garg, Satish Pandey, Vijay Kumar Meena, Amit L. Sharma, Suman Singh

The molecularly imprinted polymer (MIP) is a special variety of polymer which acts as a recognition element for the analytes whose imprint is present on the polymer during its synthesis. These can be custom tuned to have strong or weak affinity towards the targeted analyte. Biosensors are the typical devices having a recognition element of biological origin to track down certain analytes specific to the recognition element. This biological origin can be enzyme, antibody or even genetic material. The traditional biosensors have inherent disadvantages of being thermally unstable and not able to work at extreme conditions because of the biological elements used for detection purposes. Use of MIP technology marks the beginning of a new era for use as biosensing elements as “bio-mimetics” having many advantages over traditional ones. This chapter covered some insight into MIPs and their application as a biosensor for the detection of genetic materials i.e DNA biosensors.

Molecularly Imprinted Polymers, Bio-mimetics, Biosensors, Diagnostics, DNA Biosensors

Published online 3/25/2019, 26 pages

Citation: Mayank Garg, Satish Pandey, Vijay Kumar Meena, Amit L. Sharma, Suman Singh, Applications of Molecularly Imprinted Polymers to Genobiosensors, Materials Research Foundations, Vol. 47, pp 51-76, 2019


Part of the book on Biosensors

[1] L. Chen, X. Wang, W. Lu, X. Wu, J. Li, Molecular imprinting: perspectives and applications, Chem. Soc. Rev. 45 (2016) 2137–2211.
[2] G. Ertürk, B. Mattiasson, molecular imprinting techniques used for the preparation of biosensors, Sensors. 17 (2017) 288.
[3] H. Yan, K. Row, characteristic and synthetic approach of molecularly imprinted polymer, Int. J. Mol. Sci. 7 (2006) 155–178.
[4] F. Meier, B. Mizaikoff, Molecularly imprinted polymers as artificial receptors, in: Artif. Recept. Chem. Sensors, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2010: pp. 391–437.
[5] Reza Arshady Klaus Mosbach, Synthesis of substrate-selective polymers by host-guest polymerization, Macromol. Chem. Phys. 182 (1981) 687–692
[6] L. Chen, S. Xu, J. Li, Recent advances in molecular imprinting technology: current status, challenges and highlighted applications, Chem. Soc. Rev. 40 (2011) 2922.
[7] G. Vasapollo, R. Del Sole, L. Mergola, M.R. Lazzoi, A. Scardino, S. Scorrano, G. Mele, Molecularly imprinted polymers: present and future prospective, Int. J. Mol. Sci. 12 (2011) 5908–5945.
[8] F. Navarrovilloslada, J. Urraca, M. Morenobondi, G. Orellana, Zearalenone sensing with molecularly imprinted polymers and tailored fluorescent probes, Sensors Actuators B Chem. 121 (2007) 67–73.
[9] F. Puoci, F. Iemma, N. Picci, Stimuli-responsive molecularly imprinted polymers for Drug Delivery: A review, Curr. Drug Deliv. 5 (2008) 85–96.
[10] W.C. Lee, C.H. Cheng, H.H. Pan, T.H. Chung, C.C. Hwang, Chromatographic characterization of molecularly imprinted polymers, Anal. Bioanal. Chem. 390 (2008) 1101–1109
[11] M. Cieplak, W. Kutner, Artificial biosensors: How can molecular imprinting mimic biorecognition?, Trends Biotechnol. 34 (2016) 922–941.
[12] P. Mehrotra, Biosensors and their applications – A review., J. Oral Biol. Craniofacial Res. 6 (2016) 153–9.
[13] K. Cammann, Bio-sensors based on ion-selective electrodes, Fresenius’ Zeitschrift Fur Anal. Chemie. 287 (1977) 1–9.
[14] D. Kim, D. Kang, molecular recognition and specific interactions for biosensing applications, Sensors. 8 (2008) 6605–6641.
[15] M.S. Thakur, K. V. Ragavan, Biosensors in food processing, J. Food Sci. Technol. 50 (2013) 625–641.
[16] and A.A.J. Anwarul Hasan, Md Nurunnabi, Mahboob Morshed, Arghya Paul, Alessandro Polini, Tapas Kuila,Moustafa Al Hariri, Yong-kyu Lee, Recent advances in application of biosensors in tissue engineering, Biomed Res. Int. (2014).
[17] S. Kanchi, M.I. Sabela, P.S. Mdluli, Inamuddin, K. Bisetty, Smartphone based bioanalytical and diagnosis applications: A review, Biosens. Bioelectron. 102 (2018) 136–149.
[18] A.I.R.-V. and J.S. Jordi Colomer-Farrarons, Pere Ll. Miribel-Català, Portable Bio-Devices: Design of electrochemical instruments from miniaturized to implantable devices, in: P.A. Serra (Ed.), New Perspect. Biosens. Technol. Appl., 2011: pp. 373–400
[19] E.-H. Yoo, S.-Y. Lee, Glucose biosensors: An overview of use in clinical practice, Sensors. 10 (2010) 4558–4576.
[20] U.B. Trivedi, D. Lakshminarayana, I.L. Kothari, P.B. Patel, C.J. Panchal, Amperometric fructose biosensor based on fructose dehydrogenase enzyme, Sensors Actuators B Chem. 136 (2009) 45–51.
[21] M. Hämmerle, K. Hilgert, M.A. Horn, R. Moos, Analysis of volatile alcohols in apple juices by an electrochemical biosensor measuring in the headspace above the liquid, Sensors Actuators B Chem. 158 (2011) 313–318.
[22] S. Lata, B. Batra, N. Singala, C.S. Pundir, Construction of amperometric l-amino acid biosensor based on l-amino acid oxidase immobilized onto ZnONPs/c-MWCNT/PANI/AuE, Sensors Actuators B Chem. 188 (2013) 1080–1088.
[23] S. Sharma, H. Byrne, R.J. O’Kennedy, Antibodies and antibody-derived analytical biosensors, Essays Biochem. 60 (2016) 9–18.
[24] M.M. and K.W.C.L. Guangfu Wu, Graphene field-effect transistors-based biosensors for Escherichia coli detection, in: Int. Conf. Nanotechnol. Sendai, Japan, 2016: pp. 22–25
[25] J.W.F. Law, N.S. Ab Mutalib, K.G. Chan, L.H. Lee, Rapid methods for the detection of foodborne bacterial pathogens: principles, applications, advantages and limitations, Front Microbiol. 5 (2014) 770–788
[26] S.T. Sanjay, G. Fu, M. Dou, F. Xu, R. Liu, H. Qi, X. Li, Biomarker detection for disease diagnosis using cost-effective microfluidic platforms, Analyst. 140 (2015) 7062–7081.
[27] R.D. Munje, S. Muthukumar, B. Jagannath, S. Prasad, A new paradigm in sweat based wearable diagnostics biosensors using room temperature ionic liquids (RTILs), Sci. Rep. 7 (2017) 1950.
[28] R. Singh, G. Sumana, R. Verma, S. Sood, K.N. Sood, R.K. Gupta, B.D. Malhotra, Fabrication of Neisseria gonorrhoeae biosensor based on chitosan–MWCNT platform, Thin Solid Films. 519 (2010) 1135–1140.
[29] Ziyatdinova Guzel, Galandova Julia, Labuda Jan, Impedimetric Nanostructured disposable DNA-based biosensors for the detection of deep dna damage and effect of antioxidants, Int. J. Electrochem. Sci. 3 (2008) 223–235
[30] C.A. Kellenberger, C. Chen, A.T. Whiteley, D.A. Portnoy, M.C. Hammond, RNA-Based Fluorescent biosensors for live cell imaging of second messenger cyclic di-AMP, J. Am. Chem. Soc. 137 (2015) 6432–6435.
[31] F. Long, A. Zhu, H. Shi, Recent advances in optical biosensors for environmental monitoring and early warning, Sensors. 13 (2013) 13928–13948.
[32] S.M. Borisov, O.S. Wolfbeis, Optical biosensors, Chem. Rev. 108 (2008) 423–461.
[33] M. Lee, K. Lee, K.H. Kim, K.W. Oh, J. Choo, SERS-based immunoassay using a gold array-embedded gradient microfluidic chip, Lab Chip. 12 (2012) 3720.
[34] B.X. B.Danielsson, U.Hedberg, M.Rank, Recent investigations on calorimetric biosensors, Sensors Actuators B Chem. 6 (1992) 138–142
[35] D.E. Gaddes, M.C. Demirel, W.B. Reeves, S. Tadigadapa, Remote calorimetric detection of urea via flow injection analysis, Analyst. 140 (2015) 8033–8040.
[36] P. Skládal, Piezoelectric biosensors, TrAC Trends Anal. Chem. 79 (2016) 127–133.
[37] M. Bisoffi, V. Severns, D.W. Branch, T.L. Edwards, R.S. Larson, Rapid detection of human immunodeficiency virus types 1 and 2 by use of an improved piezoelectric biosensor, J. Clin. Microbiol. 51 (2013) 1685–1691.
[38] G. Marrazza, Piezoelectric biosensors for organophosphate and carbamate pesticides: A review, Biosensors. 4 (2014) 301–317.
[39] Y. Zhou, C.-W. Chiu, H. Liang, interfacial structures and properties of organic materials for biosensors: An overview, Sensors. 12 (2012) 15036–15062.
[40] C. Zhu, G. Yang, H. Li, D. Du, Y. Lin, Electrochemical sensors and biosensors based on nanomaterials and nanostructures, Anal. Chem. 87 (2015) 230–249.
[41] N.J. Ronkainen, H.B. Halsall, W.R. Heineman, Electrochemical biosensors, Chem. Soc. Rev. 39 (2010) 1747.
[42] A.P.F. Turner, Biosensors: sense and sensibility, Chem. Soc. Rev. 42 (2013) 3184.
[43] B. Wang, S. Takahashi, X. Du, J. Anzai, electrochemical biosensors based on ferroceneboronic acid and its derivatives: A review, Biosensors. 4 (2014) 243–256.
[44] D. Grieshaber, R. MacKenzie, J. Vörös, E. Reimhult, Electrochemical biosensors – sensor principles and architectures, Sensors. 8 (2008) 1400–1458.
[45] E.B. Bahadır, M.K. Sezgintürk, Electrochemical biosensors for hormone analyses, Biosens. Bioelectron. 68 (2015) 62–71.
[46] S.J. Sadeghi, Amperometric Biosensors, in: Encycl. Biophys., Springer Berlin Heidelberg, Berlin, Heidelberg, 2013: pp. 61–67.
[47] T.B. Goriushkina, A.P. Soldatkin, S. V. Dzyadevych, Application of amperometric biosensors for analysis of ethanol, glucose, and lactate in wine, J. Agric. Food Chem. 57 (2009) 6528–6535.
[48] Z.-D. Gao, Y. Qu, T. Li, N.K. Shrestha, Y.-Y. Song, Development of amperometric glucose biosensor based on prussian blue functionlized TiO2 nanotube arrays, Sci. Rep. 4 (2015) 6891.
[49] Marianna Portaccio and Maria Lepore, Determination of different saccharides concentration by means of a multienzymes amperometric biosensor, J. Sensors. (2017).
[50] M. Belluzo, M. Ribone, C. Lagier, Assembling amperometric biosensors for clinical diagnostics, Sensors. 8 (2008) 1366–1399.
[51] A.V.B. and H.Y. Antonio Aparecido Pupim Ferreira, Carolina Venturini Uliana, Michelle de Souza Castilho, Naira Canaverolo Pesquero, Marcos Vinicius Foguel, Glauco Pilon dos Santos, Cecílio Sadao Fugivara, Amperometric biosensor for diagnosis of disease, in: State Art Biosens., 2013
[52] M. Hiraiwa, J.H. Kim, H.B. Lee, S. Inoue, A.L. Becker, K.M. Weigel, G.A. Cangelosi, K.-H. Lee, J.-H. Chung, Amperometric immunosensor for rapid detection of Mycobacterium tuberculosis, J. Micromechanics Microengineering. 25 (2015) 055013.
[53] M.H.H.G. and R.G.G. Luis Jesús Villarreal Gómez, Irma Esthela Soria Mercado, Detection of molecular markers of cancer through the use of biosensors, Biol. Med. (2015).
[54] A.M. Pisoschi, Potentiometric Biosensors: Concept and analytical applications-An editorial, Biochem. Anal. Biochem. 5 (2016).
[55] S.V. Marchenko, I.S. Kucherenko, A.N. Hereshko, I.V. Panasiuk, O.O. Soldatkin, A.V. El’skaya, A.P. Soldatkin, Application of potentiometric biosensor based on recombinant urease for urea determination in blood serum and hemodialyzate, Sensors Actuators B Chem. 207 (2015) 981–986.
[56] C.-Y. Lai, P. Foot, J. Brown, P. Spearman, A urea potentiometric biosensor based on a thiophene copolymer, Biosensors. 7 (2017) 13.
[57] U.B. Trivedi, D. Lakshminarayana, I.L. Kothari, N.G. Patel, H.N. Kapse, K.K. Makhija, P.B. Patel, C.J. Panchal, Potentiometric biosensor for urea determination in milk, Sensors Actuators B Chem. 140 (2009) 260–266.
[58] K.V. Stepurska, O.O. Soldatkin, V.M. Arkhypova, A.P. Soldatkin, F. Lagarde, N. Jaffrezic-Renault, S.V. Dzyadevych, Development of novel enzyme potentiometric biosensor based on pH-sensitive field-effect transistors for aflatoxin B1 analysis in real samples, Talanta. 144 (2015) 1079–1084.
[59] A. Tarasov, D.W. Gray, M.-Y. Tsai, N. Shields, A. Montrose, N. Creedon, P. Lovera, A. O’Riordan, M.H. Mooney, E.M. Vogel, A potentiometric biosensor for rapid on-site disease diagnostics, Biosens. Bioelectron. 79 (2016) 669–678.
[60] T.P. Velychko, О.О. Soldatkin, V.G. Melnyk, S. V. Marchenko, S.K. Kirdeciler, B. Akata, A.P. Soldatkin, A. V. El’skaya, S. V. Dzyadevych, A Novel Conductometric Urea Biosensor with improved analytical characteristic based on recombinant urease adsorbed on nanoparticle of silicalite, Nanoscale Res. Lett. 11 (2016) 106.
[61] K. Yagiuda, A. Hemmi, S. Ito, Y. Asano, Y. Fushinuki, C.-Y. Chen, I. Karube, Development of a conductivity-based immunosensor for sensitive detection of methamphetamine (stimulant drug) in human urine, Biosens. Bioelectron. 11 (1996) 703–707.
[62] I. Lee, X. Luo, J. Huang, X.T. Cui, M. Yun, Detection of cardiac biomarkers using single polyaniline nanowire-based conductometric biosensors, Biosensors. 2 (2012) 205–220.
[63] C. Okafor, D. Grooms, E. Alocilja, S. Bolin, comparison between a conductometric biosensor and ELISA in the evaluation of Johne’s disease, Sensors. 14 (2014) 19128–19137.
[64] S.A. Soldatkin OO, Kucherenko IS, Pyeshkova VM, Kukla AL, Jaffrezic-Renault N, El’skaya AV, Dzyadevych SV, Novel conductometric biosensor based on three-enzyme system for selective determination of heavy metal ions., Bioelectrochemistry. 83 (2012) 25–30
[65] A.L.B.; C.D.; J.-M.C.; S.V.D.; C. Tran-Minh, Whole-cell conductometric biosensor for determination heavy-metals in water, in: TRANSDUCERS 2007 – 2007 Int. Solid-State Sensors, Actuators Microsystems Conf., n.d
[66] Ani Mulyasuryani and Sasangka Prasetyawan, Organophosphate hydrolase in conductometric biosensor for the detection of organophosphate pesticides, Anal Chem Insights. 10 (2015) 23–27
[67] T.-T. Nguyen-Boisse, J. Saulnier, N. Jaffrezic-Renault, F. Lagarde, Miniaturised enzymatic conductometric biosensor with Nafion membrane for the direct determination of formaldehyde in water samples, Anal. Bioanal. Chem. 406 (2014) 1039–1048.
[68] Z. Muhammad-Tahir, E.C. Alocilja, A conductometric biosensor for biosecurity, Biosens. Bioelectron. 18 (2003) 813–819.
[69] T. Wang, M. Farajollahi, Y.S. Choi, I.-T. Lin, J.E. Marshall, N.M. Thompson, S. Kar-Narayan, J.D.W. Madden, S.K. Smoukov, Electroactive polymers for sensing, Interface Focus. 6 (2016) 20160026.
[70] Y. Wang, Z. Zhang, V. Jain, J. Yi, S. Mueller, J. Sokolov, Z. Liu, K. Levon, B. Rigas, M.H. Rafailovich, Potentiometric sensors based on surface molecular imprinting: Detection of cancer biomarkers and viruses, Sensors Actuators B Chem. 146 (2010) 381–387.
[71] G. Selvolini, G. Marrazza, MIP-based sensors: Promising new tools for cancer biomarker determination, Sensors. 17 (2017) 718.
[72] C. Wang, Z. Guo, L. Zhang, N. Zhang, K. Zhang, J. Xu, H. Wang, H. Shi, M. Qin, L. Ren, DNA based signal amplified molecularly imprinted polymer electrochemical sensor for multiplex detection, RSC Adv. 6 (2016) 49597–49603.
[73] M. Ogiso, N. Minoura, T. Shinbo, T. Shimizu, DNA detection system using molecularly imprinted polymer as the gel matrix in electrophoresis, Biosens. Bioelectron. 22 (2007) 1974–1981.
[74] A. Seidel, S. Brunner, P. Seidel, G.I. Fritz, O. Herbarth, Modified nucleosides: an accurate tumour marker for clinical diagnosis of cancer, early detection and therapy control, Br. J. Cancer. 94 (2006) 1726–1733.
[75] K. Bartold, A. Pietrzyk-Le, T.-P. Huynh, Z. Iskierko, M. Sosnowska, K. Noworyta, W. Lisowski, F. Sannicolò, S. Cauteruccio, E. Licandro, F. D’Souza, W. Kutner, programmed transfer of sequence information into a molecularly imprinted polymer for hexakis(2,2′-bithien-5-yl) DNA analogue formation toward single-nucleotide-polymorphism detection, ACS Appl. Mater. Interfaces. 9 (2017) 3948–3958.
[76] H.A. King, H.F. El-Sharif, A.M. Matia-González, V. Iadevaia, A. Fowotade, S.M. Reddy, A.P. Gerber, Generation of ribosome imprinted polymers for sensitive detection of translational responses, Sci. Rep. 7 (2017) 6542.
[77] R. Malathi, I.M. Johnson, From RNA world to Protein: An eagle’s eye view of the role of guanosine in tracing the antiquity of the intron, J. Biomol. Struct. Dyn. 18 (2001) 709–712.
[78] Y.C. Liu, C. Tian, H.L. Cong, Q.H. Peng, S.H. Xu, B. Yu, Selective adsorption and separation of adenine by molecularly imprinted polymethacrylic acid on surface of silica particles, Integr. Ferroelectr. 178 (2017) 11–22.
[79] S. Scorrano, L. Mergola, M. Di Bello, M. Lazzoi, G. Vasapollo, R. Del Sole, Molecularly imprinted composite membranes for selective detection of 2-deoxyadenosine in urine samples, Int. J. Mol. Sci. 16 (2015) 13746–13759.
[80] A. Pietrzyk, S. Suriyanarayanan, W. Kutner, R. Chitta, M.E. Zandler, F. D’Souza, Molecularly imprinted polymer (MIP) based piezoelectric microgravimetry chemosensor for selective determination of adenine, Biosens. Bioelectron. 25 (2010) 2522–2529.
[81] S.M. Reddy, Q.T. Phan, H. El-Sharif, L. Govada, D. Stevenson, N.E. Chayen, Protein crystallization and biosensor applications of hydrogel-based molecularly imprinted polymers, Biomacromolecules. 13 (2012) 3959–3965.
[82] Y. Li, Y. Liu, J. Liu, J. Liu, H. Tang, C. Cao, D. Zhao, Y. Ding, Molecularly imprinted polymer decorated nanoporous gold for highly selective and sensitive electrochemical sensors, Sci. Rep. 5 (2015) 7699.
[83] K.M. Afsarimanesh N, Mukhopadhyay SC, molecularly imprinted polymer-based electrochemical biosensor for bone loss detection., IEEE Trans Biomed Eng. 65 (2018) 1264–1271
[84] P.-Y. Chen, R. Vittal, P.-C. Nien, G.-S. Liou, K.-C. Ho, A novel molecularly imprinted polymer thin film as biosensor for uric acid, Talanta. 80 (2010) 1145–1151.
[85] P. Jolly, V. Tamboli, R.L. Harniman, P. Estrela, C.J. Allender, J.L. Bowen, Aptamer–MIP hybrid receptor for highly sensitive electrochemical detection of prostate specific antigen, Biosens. Bioelectron. 75 (2016) 188–195.
[86] A. Tiwari, S.R. Deshpande, H. Kobayashi, A.P.F. Turner, Detection of p53 gene point mutation using sequence-specific molecularly imprinted PoPD electrode, Biosens. Bioelectron. 35 (2012) 224–229.
[87] T.-P. Huynh, P. Pieta, F. D’Souza, W. Kutner, Molecularly imprinted polymer for recognition of 5-Fluorouracil by RNA-type nucleobase pairing, Anal. Chem. 85 (2013) 8304–8312.