Applications of Aptasensors in Health Care


Applications of Aptasensors in Health Care

Abhijeet Dhiman, Harleen Kaur, Chanchal Kumar, Yusra Ahmad, Tarun Kumar Sharma

Access to quality diagnostics is vital to maintain a healthy life as rapid and accurate diagnostic tests can guide the clinician to appropriately and timely manage diseases. However, a major limitation in the diagnostic sector is that it depends heavily on the supply of antibodies. These antibodies are used as molecular recognition elements in a variety of diagnostic assays but they usually displayed a high level of batch-to-batch variation thus pose a great threat in maintaining the quality of a diagnostic test. To overcome this limitation in recent years chemical rivals of antibody called aptamers have emerged. Aptamers are ssDNA or RNA molecule that can acquire a typical 2D or 3D structure to recognize its target with high affinity and specificity. In the last few years, aptamers have attained an impressive growth by showing their utility in detection of a variety of analytes ranging from small molecules to protein to the whole cell. It would not be surprising if aptamers will replace antibodies in diagnostic assays in coming years. This chapter is intended to highlight the importance and utility of aptasensors in health care.

Aptamer, Aptasensors, Health, Diagnostics, Pathogen

Published online 3/25/2019, 50 pages

Citation: Abhijeet Dhiman, Harleen Kaur, Chanchal Kumar, Yusra Ahmad, Tarun Kumar Sharma, Applications of Aptasensors in Health Care, Materials Research Foundations, Vol. 47, pp 1-50, 2019


Part of the book on Biosensors

[1] R. Rapini, G. Marrazza, Electrochemical aptasensors for contaminants detection in food and environment: Recent advances, Bioelectrochemistry. 118 (2017) 47–61.
[2] J. Aceña, S. Stampachiacchiere, S. Pérez, D. Barceló, Advances in liquid chromatography–high-resolution mass spectrometry for quantitative and qualitative environmental analysis, Anal. Bioanal. Chem. 407 (2015) 6289–6299.
[3] H.C. Liang, N. Bilon, M.T. Hay, Analytical methods for pesticide residues in the water environment, Water Environ. Res. 87 (2015) 1923–1937.
[4] S. Sudsakorn, A. Phatarphekar, T. O’Shea, H. Liu, Determination of 1,25-dihydroxyvitamin D2 in rat serum using liquid chromatography with tandem mass spectrometry, J. Chromatogr. B. 879 (2011) 139–145.
[5] N. Duan, S. Wu, S. Dai, H. Gu, L. Hao, H. Ye, Z. Wang, Advances in aptasensors for the detection of food contaminants, Analyst. 141 (2016) 3942–3961.
[6] A. Hayat, J.L. Marty, Aptamer based electrochemical sensors for emerging environmental pollutants, Front. Chem. 2 (2014).
[7] A. Dhiman, P. Kalra, V. Bansal, J.G. Bruno, T.K. Sharma, Aptamer-based point-of-care diagnostic platforms, Sensors Actuators B Chem. 246 (2017) 535–553.
[8] S. Kanchi, M.I. Sabela, P.S. Mdluli, Inamuddin, K. Bisetty, Smartphone based bioanalytical and diagnosis applications: A review, Biosens. Bioelectron. 102 (2018) 136–149.
[9] C. Tuerk, L. Gold, Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase, Science (80-. ). 249 (1990) 505–510.
[10] A.D. Ellington, J.W. Szostak, In vitro selection of RNA molecules that bind specific ligands, Nature. 346 (1990) 818–822.
[11] D.L. Robertson, G.F. Joyce, Selection in vitro of an RNA enzyme that specifically cleaves single-stranded DNA, Nature. 344 (1990) 467–468.
[12] A. Ozer, J.M. Pagano, J.T. Lis, New technologies provide quantum changes in the scale, speed, and success of selex methods and aptamer characterization, Mol. Ther. – Nucleic Acids. 3 (2014) e183.
[13] M. Blind, M. Blank, Aptamer selection technology and recent advances, Mol. Ther. – Nucleic Acids. 4 (2015) e223.
[14] K.M. Ahmad, Y. Xiao, H.T. Soh, Selection is more intelligent than design: improving the affinity of a bivalent ligand through directed evolution, Nucleic Acids Res. 40 (2012) 11777–11783.
[15] R.S. and T.K.S. Aradhana Chopra, Aptamers as an emerging player in biology, aptamers Synth. Antibodies. 1 (2014) 11
[16] G. Hybarger, J. Bynum, R.F. Williams, J.J. Valdes, J.P. Chambers, A microfluidic SELEX prototype, Anal. Bioanal. Chem. 384 (2006) 191–198.
[17] T.K. Sharma, J.G. Bruno, A. Dhiman, ABCs of DNA aptamer and related assay development, Biotechnol. Adv. 35 (2017) 275–301.
[18] T.K. and R.S. Sharma, Nucleic acid aptamers as an emerging diagnostic tool for animal pathogens., Adv. Anim. Vet. Sci. 2 (2014) 50–55
[19] V. Crivianu-Gaita, M. Thompson, Aptamers, antibody scFv, and antibody Fab’ fragments: An overview and comparison of three of the most versatile biosensor biorecognition elements, Biosens. Bioelectron. 85 (2016) 32–45.
[20] T. Hianik, A. Porfireva, I. Grman, G. Evtugyn, Aptabodies – New type of artificial receptors for detection proteins, Protein Pept. Lett. 15 (2008) 799–805.
[21] H. Hasegawa, K. Taira, K. Sode, K. Ikebukuro, Improvement of aptamer affinity by dimerization, Sensors. 8 (2008) 1090–1098.
[22] H. Kaur, L.-Y.L. Yung, Probing high affinity sequences of dna aptamer against VEGF165, PLoS One. 7 (2012) e31196.
[23] J. Bruno, Predicting the uncertain future of aptamer-based diagnostics and therapeutics, Molecules. 20 (2015) 6866–6887.
[24] G. Abel, Current status and future prospects of point-of-care testing around the globe, Expert Rev. Mol. Diagn. 15 (2015) 853–855.
[25] K.S. Lam, M. Lebl, V. Krchňák, The “One-Bead-One-Compound” combinatorial library method, Chem. Rev. 97 (1997) 411–448.
[26] O. Lazcka, F.J. Del Campo, F.X. Muñoz, Pathogen detection: A perspective of traditional methods and biosensors, Biosens. Bioelectron. 22 (2007) 1205–1217.
[27] C.K. O’Sullivan, Aptasensors – the future of biosensing?, Anal. Bioanal. Chem. 372 (2002) 44–48.
[28] I.E. Tothill, Biosensors for cancer markers diagnosis, Semin. Cell Dev. Biol. 20 (2009) 55–62.
[29] T. Tang, J. Deng, M. Zhang, G. Shi, T. Zhou, Quantum dot-DNA aptamer conjugates coupled with capillary electrophoresis: A universal strategy for ratiometric detection of organophosphorus pesticides, Talanta. 146 (2016) 55–61.
[30] T. Mairal, V. Cengiz Özalp, P. Lozano Sánchez, M. Mir, I. Katakis, C.K. O’Sullivan, Aptamers: molecular tools for analytical applications, Anal. Bioanal. Chem. 390 (2008) 989–1007.
[31] R. Rapini, G. Marrazza, Biosensor potential in pesticide monitoring, in: 2016: pp. 3–31.
[32] E.W.M. Ng, D.T. Shima, P. Calias, E.T. Cunningham, D.R. Guyer, A.P. Adamis, Pegaptanib, a targeted anti-VEGF aptamer for ocular vascular disease, Nat. Rev. Drug Discov. 5 (2006) 123–132.
[33] M.N. Stojanovic, D.W. Landry, Aptamer-based colorimetric probe for cocaine, J. Am. Chem. Soc. 124 (2002) 9678–9679.
[34] M. Famulok, J.S. Hartig, G. Mayer, Functional aptamers and aptazymes in biotechnology, diagnostics, and therapy, Chem. Rev. 107 (2007) 3715–3743.
[35] F. Wang, S. Liu, M. Lin, X. Chen, S. Lin, X. Du, H. Li, H. Ye, B. Qiu, Z. Lin, L. Guo, G. Chen, Colorimetric detection of microcystin-LR based on disassembly of orient-aggregated gold nanoparticle dimers, Biosens. Bioelectron. 68 (2015) 475–480.
[36] L. Li, B. Li, Y. Qi, Y. Jin, Label-free aptamer-based colorimetric detection of mercury ions in aqueous media using unmodified gold nanoparticles as colorimetric probe, Anal. Bioanal. Chem. 393 (2009) 2051–2057.
[37] V. Ostatná, H. Vaisocherová, J. Homola, T. Hianik, Effect of the immobilisation of DNA aptamers on the detection of thrombin by means of surface plasmon resonance, Anal. Bioanal. Chem. 391 (2008) 1861–1869.
[38] I. Willner, M. Zayats, Electronic aptamer-based sensors, Angew. Chemie Int. Ed. 46 (2007) 6408–6418.
[39] E.E. Ferapontova, E.M. Olsen, K. V. Gothelf, An RNA aptamer-based electrochemical biosensor for detection of theophylline in serum, J. Am. Chem. Soc. 130 (2008) 4256–4258.
[40] K.-M. Song, M. Cho, H. Jo, K. Min, S.H. Jeon, T. Kim, M.S. Han, J.K. Ku, C. Ban, Gold nanoparticle-based colorimetric detection of kanamycin using a DNA aptamer, Anal. Biochem. 415 (2011) 175–181.
[41] T.K. Sharma, R. Ramanathan, P. Weerathunge, M. Mohammadtaheri, H.K. Daima, R. Shukla, V. Bansal, Aptamer-mediated ‘turn-off/turn-on’ nanozyme activity of gold nanoparticles for kanamycin detection, Chem. Commun. 50 (2014) 15856–15859.
[42] N. Rupcich, R. Nutiu, Y. Li, J.D. Brennan, Entrapment of fluorescent signaling DNA aptamers in sol−gel-derived silica, Anal. Chem. 77 (2005) 4300–4307.
[43] C.J. Rankin, E.N. Fuller, K.H. Hamor, S.A. Gabarra, T.P. Shields, A simple fluorescent biosensor for theophylline based on its RNA aptamer, Nucleosides, Nucleotides and Nucleic Acids. 25 (2006) 1407–1424.
[44] N. Rupcich, R. Nutiu, Y. Li, J.D. Brennan, Solid-phase enzyme activity assay utilizing an entrapped fluorescence-signaling DNA aptamer, Angew. Chemie Int. Ed. 45 (2006) 3295–3299.
[45] M.N. Stojanovic, P. de Prada, D.W. Landry, Aptamer-based folding fluorescent sensor for cocaine, J. Am. Chem. Soc. 123 (2001) 4928–4931.
[46] X. Wang, J. Zhou, W. Yun, S. Xiao, Z. Chang, P. He, Y. Fang, Detection of thrombin using electrogenerated chemiluminescence based on Ru(bpy)32+-doped silica nanoparticle aptasensor via target protein-induced strand displacement, Anal. Chim. Acta. 598 (2007) 242–248.
[47] K.-H. Leung, L. Lu, M. Wang, T.-Y. Mak, D.S.-H. Chan, F.-K. Tang, C.-H. Leung, H.-Y. Kwan, Z. Yu, D.-L. Ma, A label-free luminescent switch-on assay for atp using a g-quadruplex-selective Iridium(III) complex, PLoS One. 8 (2013) e77021.
[48] G. Cappi, F.M. Spiga, Y. Moncada, A. Ferretti, M. Beyeler, M. Bianchessi, L. Decosterd, T. Buclin, C. Guiducci, Label-free detection of tobramycin in serum by transmission-localized surface plasmon resonance, Anal. Chem. 87 (2015) 5278–5285.
[49] E.J. Cho, L. Yang, M. Levy, A.D. Ellington, Using a deoxyribozyme ligase and rolling circle amplification to detect a non-nucleic acid analyte, ATP, J. Am. Chem. Soc. 127 (2005) 2022–2023.
[50] M. Zayats, Y. Huang, R. Gill, C. Ma, I. Willner, Label-free and reagentless aptamer-based sensors for small molecules, J. Am. Chem. Soc. 128 (2006) 13666–13667.
[51] P. Miao, Y. Tang, J. Yin, MicroRNA detection based on analyte triggered nanoparticle localization on a tetrahedral DNA modified electrode followed by hybridization chain reaction dual amplification, Chem. Commun. 51 (2015) 15629–15632.
[52] C.K. Dixit, K. Kadimisetty, B.A. Otieno, C. Tang, S. Malla, C.E. Krause, J.F. Rusling, Electrochemistry-based approaches to low cost, high sensitivity, automated, multiplexed protein immunoassays for cancer diagnostics, Analyst. 141 (2016) 536–547.
[53] T.H. Le, V.P. Pham, T.H. La, T.B. Phan, Q.H. Le, Electrochemical aptasensor for detecting tetracycline in milk, Adv. Nat. Sci. Nanosci. Nanotechnol. 7 (2016) 015008.
[54] M. Wei, S. Feng, A signal-off aptasensor for the determination of Ochratoxin A by differential pulse voltammetry at a modified Au electrode using methylene blue as an electrochemical probe, Anal. Methods. 9 (2017) 5449–5454.
[55] A. Abbaspour, F. Norouz-Sarvestani, A. Noori, N. Soltani, Aptamer-conjugated silver nanoparticles for electrochemical dual-aptamer-based sandwich detection of staphylococcus aureus, Biosens. Bioelectron. 68 (2015) 149–155.
[56] M. Labib, A.S. Zamay, O.S. Kolovskaya, I.T. Reshetneva, G.S. Zamay, R.J. Kibbee, S.A. Sattar, T.N. Zamay, M. V. Berezovski, Aptamer-based viability impedimetric sensor for bacteria, Anal. Chem. 84 (2012) 8966–8969.
[57] L. Hou, L. Jiang, Y. Song, Y. Ding, J. Zhang, X. Wu, D. Tang, Amperometric aptasensor for saxitoxin using a gold electrode modified with carbon nanotubes on a self-assembled monolayer, and methylene blue as an electrochemical indicator probe, Microchim. Acta. 183 (2016) 1971–1980.
[58] E. Lv, J. Ding, W. Qin, Potentiometric aptasensing of small molecules based on surface charge change, Sensors Actuators B Chem. 259 (2018) 463–466.
[59] D. Grieshaber, R. MacKenzie, J. Vörös, E. Reimhult, Electrochemical biosensors – sensor principles and architectures, Sensors. 8 (2008) 1400–1458.
[60] M. Rahman, P. Kumar, D.-S. Park, Y.-B. Shim, Electrochemical sensors based on organic conjugated polymers, Sensors. 8 (2008) 118–141.
[61] N.J. Ronkainen, H.B. Halsall, W.R. Heineman, Electrochemical biosensors, Chem. Soc. Rev. 39 (2010) 1747.
[62] E. Bakker, P. Bühlmann, E. Pretsch, Carrier-based ion-selective electrodes and bulk optodes. 1. general characteristics, Chem. Rev. 97 (1997) 3083–3132.
[63] E.G. Harsányi, K. Tóth, E. Pungor, The adsorption of copper ions on the surface of copper(II) sulphide precipitate-based ion-selective electrodes, Anal. Chim. Acta. 152 (1983) 163–171.
[64] E. Pungor, K. Tóth, Precipitate-based ion-selective electrodes, in: ion-selective electrodes Anal. Chem., Springer US, Boston, MA, 1978: pp. 143–210.
[65] V. Agarwala, M.C. Chattopadhyaya, A heterogeneous precipitate based Mn(II) coated wire ion-selective electrode, Anal. Lett. 22 (1989) 1451–1457.
[66] E.G. Harsányi, K. Tóth, E. Pungor, Y. Umezawa, S. Fujiwara, Study of the potential response of solid-state chloride electrodes at low concentration ranges, Talanta. 31 (1984) 579–584.
[67] Y. Tani, H. Eun, Y. Umezawa, A cation selective electrode based on copper(II) and nickel(II) hexacyanoferrates: dual response mechanisms, selective uptake or adsorption of analyte cations, Electrochim. Acta. 43 (1998) 3431–3441.
[68] E. Woźnica, M.M. Wójcik, M. Wojciechowski, J. Mieczkowski, E. Bulska, K. Maksymiuk, A. Michalska, Dithizone modified gold nanoparticles films for potentiometric sensing, Anal. Chem. 84 (2012) 4437–4442.
[69] G.A. Zelada-Guillén, J. Riu, A. Düzgün, F.X. Rius, Immediate detection of living bacteria at ultralow concentrations using a carbon nanotube based potentiometric aptasensor, Angew. Chemie Int. Ed. 48 (2009) 7334–7337.
[70] S.G. Meirinho, L.G. Dias, A.M. Peres, L.R. Rodrigues, Voltammetric aptasensors for protein disease biomarkers detection: A review, Biotechnol. Adv. 34 (2016) 941–953.
[71] R.S. Marks, Nanomaterials for water management, Pan Stanford, 2015.
[72] Y.C. Lim, A.Z. Kouzani, W. Duan, Aptasensors: A review, J. Biomed. Nanotechnol. 6 (2010) 93–105.
[73] R.D. and V.K.R. Sanjay Upadhyay, Mukesh K. Sharma, Mahabul Shaik, Senors-A nanotechnological approach for the detection of organophosphorous compounds/pesticides., in: Impact Pestic., 2012: pp. 391–415
[74] J. Lin, H. Ju, Electrochemical and chemiluminescent immunosensors for tumor markers, Biosens. Bioelectron. 20 (2005) 1461–1470.
[75] and Y.Y. Zhang, S., G. Wright, Materials and techniques for electrochemical biosensor design and construction, Biosens Bioelectron. 15 (2000) 273–282.
[76] F. Wei, P. Patel, W. Liao, K. Chaudhry, L. Zhang, M. Arellano-Garcia, S. Hu, D. Elashoff, H. Zhou, S. Shukla, F. Shah, C.-M. Ho, D.T. Wong, Electrochemical Sensor for Multiplex Biomarkers Detection, Clin. Cancer Res. 15 (2009) 4446–4452.
[77] M.A.T. Gilmartin, J.P. Hart, D.T. Patton, Prototype, solid-phase, glucose biosensor, Analyst. 120 (1995) 1973.
[78] H. Schulze, R. Schmid, T. Bachmann, Rapid detection of neurotoxic insecticides in food using disposable acetylcholinesterase-biosensors and simple solvent extraction, Anal. Bioanal. Chem. 372 (2002) 268–272.
[79] J. Wang, P.V.A. Pamidi, K.R. Rogers, Sol−gel-derived thick-film amperometric immunosensors, Anal. Chem. 70 (1998) 1171–1175.
[80] C.G. Neuhold, J. Wang, X. Cai, K. Kalcher, Screen-printed electrodes for nitrite based on anion-exchanger-doped carbon inks, Analyst. 120 (1995) 2377.
[81] S. Balamurugan, A. Obubuafo, S.A. Soper, D.A. Spivak, Surface immobilization methods for aptamer diagnostic applications, Anal. Bioanal. Chem. 390 (2008) 1009–1021.
[82] L. Zhou, M.H. Wang, J.P. Wang, Z.Z. Ye, Application of biosensor surface immobilization methods for aptamer, Chinese J. Anal. Chem. 39 (2011) 432–438.
[83] K. Yugender Goud, G. Catanante, A. Hayat, S. M., K. Vengatajalabathy Gobi, J.L. Marty, Disposable and portable electrochemical aptasensor for label free detection of aflatoxin B1 in alcoholic beverages, Sensors Actuators B Chem. 235 (2016) 466–473.
[84] N. MichaelGreen, Avidin, Adv. Protein Chem. 29 (1975) 85–133
[85] D. Wu, Y. Wang, Y. Zhang, H. Ma, X. Pang, L. Hu, B. Du, Q. Wei, Facile fabrication of an electrochemical aptasensor based on magnetic electrode by using streptavidin modified magnetic beads for sensitive and specific detection of Hg2+, Biosens. Bioelectron. 82 (2016) 9–13.
[86] D.J. Chung, K.C. Kim, S.H. Choi, Electrochemical DNA biosensor based on avidin–biotin conjugation for influenza virus (type A) detection, Appl. Surf. Sci. 257 (2011) 9390–9396.
[87] R. Monošík, M. Streďanský, E. Šturdík, Biosensors – classification, characterization and new trends, Acta Chim. Slovaca. 5 (2012) 109–120.
[88] N. Paniel, J. Baudart, A. Hayat, L. Barthelmebs, Aptasensor and genosensor methods for detection of microbes in real world samples, Methods. 64 (2013) 229–240.
[89] R. Das, M.K. Sharma, V.K. Rao, B.K. Bhattacharya, I. Garg, V. Venkatesh, S. Upadhyay, An electrochemical genosensor for Salmonella typhi on gold nanoparticles-mercaptosilane modified screen printed electrode, J. Biotechnol. 188 (2014) 9–16.
[90] T. Hianik, J. Wang, Electrochemical aptasensors – recent achievements and perspectives, Electroanalysis. 21 (2009) 1223–1235.
[91] A.-E. Radi, Electrochemical aptamer-based biosensors: recent advances and perspectives, Int. J. Electrochem. 2011 (2011) 1–17.
[92] A.K.H. Cheng, D. Sen, H.-Z. Yu, Design and testing of aptamer-based electrochemical biosensors for proteins and small molecules, Bioelectrochemistry. 77 (2009) 1–12.
[93] K. Han, Z. Liang, N. Zhou, Design strategies for aptamer-based biosensors, Sensors. 10 (2010) 4541–4557.
[94] B. Prieto-Simón, M. Campàs, J.-L. Marty, Electrochemical aptamer-based sensors, Bioanal. Rev. 1 (2010) 141–157.
[95] I. Palchetti, M. Mascini, Electrochemical nanomaterial-based nucleic acid aptasensors, Anal. Bioanal. Chem. 402 (2012) 3103–3114.
[96] C. Gao, Q. Wang, F. Gao, F. Gao, A high-performance aptasensor for mercury( ii ) based on the formation of a unique ternary structure of aptamer–Hg 2+ –neutral red, Chem. Commun. 50 (2014) 9397–9400.
[97] B. Strehlitz, N. Nikolaus, R. Stoltenburg, Protein detection with aptamer biosensors, Sensors. 8 (2008) 4296–4307.
[98] X. Wang, S. Dong, P. Gai, R. Duan, F. Li, Highly sensitive homogeneous electrochemical aptasensor for antibiotic residues detection based on dual recycling amplification strategy, Biosens. Bioelectron. 82 (2016) 49–54.
[99] W. Zheng, J. Teng, L. Cheng, Y. Ye, D. Pan, J. Wu, F. Xue, G. Liu, W. Chen, Hetero-enzyme-based two-round signal amplification strategy for trace detection of aflatoxin B1 using an electrochemical aptasensor, Biosens. Bioelectron. 80 (2016) 574–581.
[100] G. Catanante, R.K. Mishra, A. Hayat, J.-L. Marty, Sensitive analytical performance of folding based biosensor using methylene blue tagged aptamers, Talanta. 153 (2016) 138–144.
[101] R.Y. Lai, K.W. Plaxco, A.J. Heeger, Aptamer-based electrochemical detection of picomolar platelet-derived growth factor directly in blood serum, Anal. Chem. 79 (2007) 229–233.
[102] L. Cui, J. Wu, H. Ju, Label-free signal-on aptasensor for sensitive electrochemical detection of arsenite, Biosens. Bioelectron. 79 (2016) 861–865.
[103] L. Fang, Z. Lü, H. Wei, E. Wang, A electrochemiluminescence aptasensor for detection of thrombin incorporating the capture aptamer labeled with gold nanoparticles immobilized onto the thio-silanized ITO electrode, Anal. Chim. Acta. 628 (2008) 80–86.
[104] Y.Y. Hua M, Tao M, Wang P, Zhang Y, Wu Z, Chang Y, Label-free electrochemical cocaine aptasensor based on a target-inducing aptamer switching conformation, Anal Sci. 26 (2010) 1265–70
[105] N. de-los-Santos-Álvarez, M.J. Lobo-Castañón, A.J. Miranda-Ordieres, P. Tuñón-Blanco, Modified-RNA aptamer-based sensor for competitive impedimetric assay of neomycin B, J. Am. Chem. Soc. 129 (2007) 3808–3809.
[106] N. de-los-Santos-Álvarez, M.J. Lobo-Castañón, A.J. Miranda-Ordieres, P. Tuñón-Blanco, SPR sensing of small molecules with modified RNA aptamers: Detection of neomycin B, Biosens. Bioelectron. 24 (2009) 2547–2553.
[107] A.H. Strickland, Plant protection and world crop production By H. H. Cramer Leverkusen: ‘Bayer’ Pflanzenschutz (1967), pp. 524., Exp. Agric. 5 (1969) 82.
[108] D. Pimentel, H. Lehman, eds., The pesticide question, Springer US, Boston, MA, 1993.
[109] A.W. EC. OERKE, H.W. Dehne, F. Schönbeck, Crop production and crop protection estimated losses in major food and cash crops, 1994
[110] D. Liu, W. Chen, J. Wei, X. Li, Z. Wang, X. Jiang, A highly sensitive, dual-readout assay based on gold nanoparticles for organophosphorus and carbamate pesticides, Anal. Chem. 84 (2012) 4185–4191.
[111] Q. Long, H. Li, Y. Zhang, S. Yao, Upconversion nanoparticle-based fluorescence resonance energy transfer assay for organophosphorus pesticides, Biosens. Bioelectron. 68 (2015) 168–174.
[112] E.C. Oerke, Crop losses to pests, J. Agric. Sci. 144 (2006) 31.
[113] J. Popp, Cost-benefit analysis of crop protection measures, J. Consum. Prot. Food Saf. 6 (2011) S105–S112.
[114] R. Singh, R. Prasad, G. Sumana, K. Arora, S. Sood, R.K. Gupta, B.D. Malhotra, STD sensor based on nucleic acid functionalized nanostructured polyaniline, Biosens. Bioelectron. 24 (2009) 2232–2238.
[115] S. Berijani, Y. Assadi, M. Anbia, M.-R. Milani Hosseini, E. Aghaee, Dispersive liquid–liquid microextraction combined with gas chromatography-flame photometric detection, J. Chromatogr. A. 1123 (2006) 1–9.
[116] E. Watanabe, T. Iwafune, K. Baba, Y. Kobara, Organic solvent-saving sample preparation for systematic residue analysis of neonicotinoid insecticides in agricultural products using liquid chromatography−diode array detection, Food Anal. Methods. 9 (2016) 245–254.
[117] Z. Shi, S. Zhang, Q. Huai, D. Xu, H. Zhang, Methylamine-modified graphene-based solid phase extraction combined with UPLC-MS/MS for the analysis of neonicotinoid insecticides in sunflower seeds, Talanta. 162 (2017) 300–308.
[118] M. Saitta, G. Di Bella, M.R. Fede, V. Lo Turco, A.G. Potortì, R. Rando, M.T. Russo, G. Dugo, Gas chromatography-tandem mass spectrometry multi-residual analysis of contaminants in Italian honey samples, Food Addit. Contam. Part A. (2017) 1–9.
[119] F. Barahona, C.L. Bardliving, A. Phifer, J.G. Bruno, C.A. Batt, An aptasensor based on polymer-gold nanoparticle composite microspheres for the detection of malathion using surface-enhanced raman spectroscopy, Ind. Biotechnol. 9 (2013) 42–50.
[120] D. Moreno-González, P. Pérez-Ortega, B. Gilbert-López, A. Molina-Díaz, J.F. García-Reyes, A.R. Fernández-Alba, Evaluation of nanoflow liquid chromatography high resolution mass spectrometry for pesticide residue analysis in food, J. Chromatogr. A. 1512 (2017) 78–87.
[121] A. Goon, Z. Khan, D. Oulkar, R. Shinde, S. Gaikwad, K. Banerjee, A simultaneous screening and quantitative method for the multiresidue analysis of pesticides in spices using ultra-high performance liquid chromatography-high resolution (Orbitrap) mass spectrometry, J. Chromatogr. A. 1532 (2018) 105–111.
[122] L. Jia, M. Su, X. Wu, H. Sun, Rapid selective accelerated solvent extraction and simultaneous determination of herbicide atrazine and its metabolites in fruit by ultra high performance liquid chromatography, J. Sep. Sci. 39 (2016) 4512–4519.
[123] G. Qian, L. Wang, Y. Wu, Q. Zhang, Q. Sun, Y. Liu, F. Liu, A monoclonal antibody-based sensitive enzyme-linked immunosorbent assay (ELISA) for the analysis of the organophosphorous pesticides chlorpyrifos-methyl in real samples, Food Chem. 117 (2009) 364–370.
[124] J.K. Lee, K.C. Ahn, O.S. Park, S.Y. Kang, B.D. Hammock, Development of an ELISA for the detection of the residues of the insecticide imidacloprid in agricultural and environmental samples, J. Agric. Food Chem. 49 (2001) 2159–2167.
[125] E. Watanabe, S. Miyake, Y. Yogo, Review of enzyme-linked immunosorbent assays (ELISAs) for analyses of neonicotinoid insecticides in agro-environments, J. Agric. Food Chem. 61 (2013) 12459–12472.
[126] D.S. Bol’shakova, V.G. Amelin, Determination of pesticides in environmental materials and food products by capillary electrophoresis, J. Anal. Chem. 71 (2016) 965–1013.
[127] N. Srivastava, S. Kumari, K. Nair, S. Alam, S.K. Raza, Determination of organophosphorous pesticides in environmental water samples using surface-engineered C18 functionalized silica-coated core-shell magnetic nanoparticles–based extraction coupled with GC-MS/MS analysis, J. AOAC Int. 100 (2017) 804–809.
[128] M. Pirsaheb, M. Rezaei, N. Fattahi, M. Karami, K. Sharafi, H.R. Ghaffari, Optimization of a methodology for the simultaneous determination of deltamethrin, permethrin and malathion in stored wheat samples using dispersive liquid–liquid microextraction with solidification of floating organic drop and HPLC-UV, J. Environ. Sci. Heal. Part B. 52 (2017) 641–650.
[129] E.M. Brun, M. Garcés-García, M.J. Bañuls, J.A. Gabaldón, R. Puchades, Á. Maquieira, Evaluation of a novel malathion immunoassay for groundwater and surface water analysis, Environ. Sci. Technol. 39 (2005) 2786–2794.
[130] H. Chen, Y. Wu, W. Yang, S. Zhan, S. Qiu, P. Zhou, Ultrasensitive and selective detection of isocarbophos pesticide based on target and random ssDNA triggered aggregation of hemin in polar organic solutions, Sensors Actuators B Chem. 243 (2017) 445–453.
[131] X. Fang, W. Tan, Aptamers generated from Cell-SELEX for molecular medicine: A chemical biology approach, Acc. Chem. Res. 43 (2010) 48–57.
[132] R. Sharma, K.V. Ragavan, M.S. Thakur, K.S.M.S. Raghavarao, Recent advances in nanoparticle based aptasensors for food contaminants, Biosens. Bioelectron. 74 (2015) 612–627.
[133] X. Dou, X. Chu, W. Kong, J. Luo, M. Yang, A gold-based nanobeacon probe for fluorescence sensing of organophosphorus pesticides, Anal. Chim. Acta. 891 (2015) 291–297.
[134] Y. Qi, F.-R. Xiu, M. Zheng, B. Li, A simple and rapid chemiluminescence aptasensor for acetamiprid in contaminated samples: Sensitivity, selectivity and mechanism, Biosens. Bioelectron. 83 (2016) 243–249.
[135] L. Wang, W. Ma, W. Chen, L. Liu, W. Ma, Y. Zhu, L. Xu, H. Kuang, C. Xu, An aptamer-based chromatographic strip assay for sensitive toxin semi-quantitative detection, Biosens. Bioelectron. 26 (2011) 3059–3062.
[136] N. Mohammad Danesh, M. Ramezani, A. Sarreshtehdar Emrani, K. Abnous, S.M. Taghdisi, A novel electrochemical aptasensor based on arch-shape structure of aptamer-complimentary strand conjugate and exonuclease I for sensitive detection of streptomycin, Biosens. Bioelectron. 75 (2016) 123–128.
[137] L. Madianos, G. Tsekenis, E. Skotadis, L. Patsiouras, D. Tsoukalas, A highly sensitive impedimetric aptasensor for the selective detection of acetamiprid and atrazine based on microwires formed by platinum nanoparticles, Biosens. Bioelectron. 101 (2018) 268–274.
[138] S.M. Marín A, Martínez Vidal JL, Egea Gonzalez FJ, Garrido Frenich A, Glass CR, Assessment of potential (inhalation and dermal) and actual exposure to acetamiprid by greenhouse applicators using liquid chromatography-tandem mass spectrometry., J Chromatogr B Anal. Technol Biomed Life Sci. 804 (2004) 269–75.
[139] R.P. Kaur, V. Gupta, A.F. Christopher, P. Bansal, Potential pathways of pesticide action on erectile function – A contributory factor in male infertility, Asian Pacific J. Reprod. 4 (2015) 322–330.
[140] L. Fan, G. Zhao, H. Shi, M. Liu, Z. Li, A highly selective electrochemical impedance spectroscopy-based aptasensor for sensitive detection of acetamiprid, Biosens. Bioelectron. 43 (2013) 12–18.
[141] A. Fei, Q. Liu, J. Huan, J. Qian, X. Dong, B. Qiu, H. Mao, K. Wang, Label-free impedimetric aptasensor for detection of femtomole level acetamiprid using gold nanoparticles decorated multiwalled carbon nanotube-reduced graphene oxide nanoribbon composites, Biosens. Bioelectron. 70 (2015) 122–129.
[142] D. Jiang, X. Du, Q. Liu, L. Zhou, L. Dai, J. Qian, K. Wang, Silver nanoparticles anchored on nitrogen-doped graphene as a novel electrochemical biosensing platform with enhanced sensitivity for aptamer-based pesticide assay, Analyst. 140 (2015) 6404–6411.
[143] R. Rapini, A. Cincinelli, G. Marrazza, Acetamiprid multidetection by disposable electrochemical DNA aptasensor, Talanta. 161 (2016) 15–21.
[144] P. Weerathunge, R. Ramanathan, R. Shukla, T.K. Sharma, V. Bansal, Aptamer-controlled reversible inhibition of gold nanozyme activity for pesticide sensing, Anal. Chem. 86 (2014) 11937–11941.
[145] P. Hernandez, Y. Ballesteros, F. Galan, L. Hernandez, Determination of carbendazim with a graphite electrode modified with silicone OV-17, Electroanalysis. 8 (1996) 941–946.
[146] W. Prashantkumar, R.S. Sethi, D. Pathak, S. Rampal, S.P.S. Saini, Testicular damage after chronic exposure to carbendazim in male goats, Toxicol. Environ. Chem. 94 (2012) 1433–1442.
[147] J.M. Goldman, G.L. Rehnberg, R.L. Cooper, L.E. Gray, J.F. Hein, W.K. McElroy, Effects of the benomyl metabolite, carbendazim, on the hypothalamic-pituitary reproductive axis in the male rat, Toxicology. 57 (1989) 173–182.
[148] S. Eissa, M. Zourob, Selection and characterization of dna aptamers for electrochemical biosensing of carbendazim, Anal. Chem. 89 (2017) 3138–3145.
[149] L. Karila, R. Zarmdini, A. Petit, G. Lafaye, W. Lowenstein, M. Reynaud, Addiction à la cocaïne : données actuelles pour le clinicien, Presse Med. 43 (2014) 9–17.
[150] Center for behavioral health statistics and quality (CBHSQ) (2015) behavioral health trends in the united states, results from 2014 Natl. Surv. Drug Use Heal. Rockville, MD Subst. Abus. Andm. Heal. Serv. Adm. HHS Publ. No. SMA, 2014. NSDUH Ser. H-50 P. (n.d.) 15–4927
[151] D. Roncancio, H. Yu, X. Xu, S. Wu, R. Liu, J. Debord, X. Lou, Y. Xiao, A label-free aptamer-fluorophore assembly for rapid and specific detection of cocaine in biofluids, Anal. Chem. 86 (2014) 11100–11106.
[152] G. Bozokalfa, H. Akbulut, B. Demir, E. Guler, Z.P. Gumus, D. Odaci Demirkol, E. Aldemir, S. Yamada, T. Endo, H. Coskunol, S. Timur, Y. Yagci, Polypeptide functional surface for the aptamer immobilization: electrochemical cocaine biosensing, Anal. Chem. 88 (2016) 4161–4167.
[153] L. Asturias-Arribas, M.A. Alonso-Lomillo, O. Domínguez-Renedo, M.J. Arcos-Martínez, Sensitive and selective cocaine electrochemical detection using disposable sensors, Anal. Chim. Acta. 834 (2014) 30–36.
[154] S.P. Wren, T.H. Nguyen, P. Gascoine, R. Lacey, T. Sun, K.T.V. Grattan, Preparation of novel optical fibre-based Cocaine sensors using a molecular imprinted polymer approach, Sensors Actuators B Chem. 193 (2014) 35–41.
[155] P. Fernández, N. Lafuente, A.M. Bermejo, M. López-Rivadulla, A. Cruz, HPLC Determination of cocaine and benzoylecgonine in plasma and urine from drug abusers, J. Anal. Toxicol. 20 (1996) 224–228.
[156] G. Floriani, J.C. Gasparetto, R. Pontarolo, A.G. Gonçalves, Development and validation of an HPLC-DAD method for simultaneous determination of cocaine, benzoic acid, benzoylecgonine and the main adulterants found in products based on cocaine, Forensic Sci. Int. 235 (2014) 32–39.
[157] K. Kang, A. Sachan, M. Nilsen-Hamilton, P. Shrotriya, Aptamer functionalized microcantilever sensors for cocaine detection, Langmuir. 27 (2011) 14696–14702.
[158] Y. Lu, R.M. O’Donnell, P.B. Harrington, Detection of cocaine and its metabolites in urine using solid phase extraction-ion mobility spectrometry with alternating least squares, Forensic Sci. Int. 189 (2009) 54–59.
[159] L. Skender, V. Karačić, I. Brčić, A. Bagarić, Quantitative determination of amphetamines, cocaine, and opiates in human hair by gas chromatography/mass spectrometry, Forensic Sci. Int. 125 (2002) 120–126.
[160] M. Yonamine, N. Tawil, R. Moreau, O. Alvessilva, Solid-phase micro-extraction–gas chromatography–mass spectrometry and headspace-gas chromatography of tetrahydrocannabinol, amphetamine, methamphetamine, cocaine and ethanol in saliva samples, J. Chromatogr. B. 789 (2003) 73–78.
[161] J.L. da Costa, F.G. Tonin, L.A. Zanolli, A.A. da Matta Chasin, M.F.M. Tavares, Simple method for determination of cocaine and main metabolites in urine by CE coupled to MS, Electrophoresis. 30 (2009) 2238–2244.
[162] M. Roushani, F. Shahdost-fard, Impedimetric detection of cocaine by using an aptamer attached to a screen printed electrode modified with a dendrimer/silver nanoparticle nanocomposite, Microchim. Acta. 185 (2018) 214.
[163] P. Hashemi, H. Bagheri, A. Afkhami, Y.H. Ardakani, T. Madrakian, Fabrication of a novel aptasensor based on three-dimensional reduced graphene oxide/polyaniline/gold nanoparticle composite as a novel platform for high sensitive and specific cocaine detection, Anal. Chim. Acta. 996 (2017) 10–19.
[164] B. Shen, J. Li, W. Cheng, Y. Yan, R. Tang, Y. Li, H. Ju, S. Ding, Electrochemical aptasensor for highly sensitive determination of cocaine using a supramolecular aptamer and rolling circle amplification, Microchim. Acta. 182 (2015) 361–367.
[165] S.M. Taghdisi, N.M. Danesh, A.S. Emrani, M. Ramezani, K. Abnous, A novel electrochemical aptasensor based on single-walled carbon nanotubes, gold electrode and complimentary strand of aptamer for ultrasensitive detection of cocaine, Biosens. Bioelectron. 73 (2015) 245–250.
[166] F. Su, S. Zhang, H. Ji, H. Zhao, J.-Y. Tian, C.-S. Liu, Z. Zhang, S. Fang, X. Zhu, M. Du, Two-dimensional zirconium-based metal–organic framework nanosheet composites embedded with au nanoclusters: a highly sensitive electrochemical aptasensor toward detecting cocaine, ACS Sensors. 2 (2017) 998–1005.
[167] Z. Chen, M. Lu, Target-responsive aptamer release from manganese dioxide nanosheets for electrochemical sensing of cocaine with target recycling amplification, Talanta. 160 (2016) 444–448.
[168] Y. Du, B. Li, S. Guo, Z. Zhou, M. Zhou, E. Wang, S. Dong, G-Quadruplex-based DNAzyme for colorimetric detection ofcocaine: Using magnetic nanoparticles as the separation and amplification element, Analyst. 136 (2011) 493–497.
[169] J.-L. He, Z.-S. Wu, H. Zhou, H.-Q. Wang, J.-H. Jiang, G.-L. Shen, R.-Q. Yu, Fluorescence aptameric sensor for strand displacement amplification detection of cocaine, Anal. Chem. 82 (2010) 1358–1364.
[170] Y. Shi, H. Dai, Y. Sun, J. Hu, P. Ni, Z. Li, Fluorescent sensing of cocaine based on a structure switching aptamer, gold nanoparticles and graphene oxide, Analyst. 138 (2013) 7152.
[171] S. Latini, F. Pedata, Adenosine in the central nervous system: release mechanisms and extracellular concentrations, J. Neurochem. 79 (2008) 463–484.
[172] J.. Phillis, Adenosine in the control of the cerebral circulation., Cerebrovasc Brain Metab Rev. 1 (1989) 26–54
[173] J.M. Brundege, T. V. Dunwiddie, Role of adenosine as a modulator of synaptic activity in the central nervous system, in: 1997: pp. 353–391.
[174] M.R. McMillan, G. Burnstock, S.G. Haworth, Vasodilatation of intrapulmonary arteries to P2-receptor nucleotides in normal and pulmonary hypertensive newborn piglets, Br. J. Pharmacol. 128 (1999) 543–548.
[175] D.-W. Huang, C.-G. Niu, G.-M. Zeng, M. Ruan, Time-resolved fluorescence biosensor for adenosine detection based on home-made europium complexes, Biosens. Bioelectron. 29 (2011) 178–183.
[176] X. Wang, P. Dong, P. He, Y. Fang, A solid-state electrochemiluminescence sensing platform for detection of adenosine based on ferrocene-labeled structure-switching signaling aptamer, Anal. Chim. Acta. 658 (2010) 128–132.
[177] S. Giglioni, R. Leoncini, E. Aceto, A. Chessa, S. Civitelli, A. Bernini, G. Tanzini, F. Carraro, A. Pucci, D. Vannoni, Adenosine Kinase Gene Expression in Human Colorectal Cancer, Nucleosides, Nucleotides and Nucleic Acids. 27 (2008) 750–754.
[178] G. Luippold, U. Delabar, D. Kloor, B. Mühlbauer, Simultaneous determination of adenosine, S-adenosylhomocysteine and S-adenosylmethionine in biological samples using solid-phase extraction and high-performance liquid chromatography, J. Chromatogr. B Biomed. Sci. Appl. 724 (1999) 231–238.
[179] Y. Zhu, P.S.. Wong, Q. Zhou, H. Sotoyama, P.T. Kissinger, Identification and determination of nucleosides in rat brain microdialysates by liquid chromatography/electrospray tandem mass spectrometry, J. Pharm. Biomed. Anal. 26 (2001) 967–973.
[180] L.-F. Huang, F.-Q. Guo, Y.-Z. Liang, B.-Y. Li, B.-M. Cheng, Simple and rapid determination of adenosine in human synovial fluid with high performance liquid chromatography–mass spectrometry, J. Pharm. Biomed. Anal. 36 (2004) 877–882.
[181] Hua Lin, Dan-Ke Xu, Hong-Yuan Chen, Simultaneous determination of purine bases, ribonucleosides and ribonucleotides by capillary electrophoresis-electrochemistry with a copper electrode, J. Chromatogr. A. 760 (1997) 227–233.
[182] H.M. Siragy, J. Linden, Sodium intake markedly alters renal interstitial fluid adenosine, Hypertension. 27 (1996) 404–407.
[183] D.B. Northrop, F.B. Simpson, New concepts in bioorganic chemistry beyond enzyme kinetics: Direct determination of mechanisms by stopped-flow mass spectrometry, Bioorg. Med. Chem. 5 (1997) 641–644.
[184] M.E. Revenis, M.A. Kaliner, Lactoferrin and lysozyme deficiency in airway secretions: Association with the development of bronchopulmonary dysplasia, J. Pediatr. 121 (1992) 262–270.
[185] S. Lee-Huang, P.L. Huang, Y. Sun, P.L. Huang, H. -f. Kung, D.L. Blithe, H.-C. Chen, Lysozyme and RNases as anti-HIV components in -core preparations of human chorionic gonadotropin, Proc. Natl. Acad. Sci. 96 (1999) 2678–2681.
[186] J. Ireland, J. Herzog, E.R. Unanue, Cutting edge: unique T cells that recognize citrullinated peptides are a feature of protein immunization, J. Immunol. 177 (2006) 1421–1425.
[187] Z.N. and S.Y. Chunyan Deng, Jinhua Chen, Lihua Nie, Sensitive bifunctional aptamer-based electrochemical biosensor for small molecules and protein, Anal. Chem. 81 (2009) 9972–9978
[188] F. Shahdost-fard, A. Salimi, E. Sharifi, A. Korani, Fabrication of a highly sensitive adenosine aptasensor based on covalent attachment of aptamer onto chitosan-carbon nanotubes-ionic liquid nanocomposite, Biosens. Bioelectron. 48 (2013) 100–107.
[189] D. Wu, X. Ren, L. Hu, D. Fan, Y. Zheng, Q. Wei, Electrochemical aptasensor for the detection of adenosine by using PdCu@MWCNTs-supported bienzymes as labels, Biosens. Bioelectron. 74 (2015) 391–397.
[190] Y. Wang, J. Feng, Z. Tan, H. Wang, Electrochemical impedance spectroscopy aptasensor for ultrasensitive detection of adenosine with dual backfillers, Biosens. Bioelectron. 60 (2014) 218–223.
[191], (n.d.)
[192] A. Davydova, M. Vorobjeva, D. Pyshnyi, S. Altman, V. Vlassov, A. Venyaminova, Aptamers against pathogenic microorganisms, Crit. Rev. Microbiol. 42 (2016) 847–865.
[193] M. Ikanovic, W.E. Rudzinski, J.G. Bruno, A. Allman, M.P. Carrillo, S. Dwarakanath, S. Bhahdigadi, P. Rao, J.L. Kiel, C.J. Andrews, Fluorescence assay based on aptamer-quantum dot binding to bacillus thuringiensis spores, J. Fluoresc. 17 (2007) 193–199.
[194] W. Wu, M. Li, Y. Wang, H. Ouyang, L. Wang, C. Li, Y. Cao, Q. Meng, J. Lu, Aptasensors for rapid detection of Escherichia coli O157:H7 and Salmonella typhimurium, Nanoscale Res. Lett. 7 (2012) 658.
[195], (n.d.)
[196], (n.d.)
[197] James Miller, Interference in immunoassays: avoiding erroneous results., Clin. Lab. 28 (2004) 14–17
[198] S. Laperche, N. Le Marrec, N. Simon, F. Bouchardeau, C. Defer, M. Maniez-Montreuil, T. Levayer, J.-P. Zappitelli, J.-J. Lefrere, A new HCV core antigen assay based on disassociation of immune complexes: an alternative to molecular biology in the diagnosis of early HCV infection, Transfusion. 43 (2003) 958–962.
[199] S. Lee, Y.S. Kim, M. Jo, M. Jin, D. Lee, S. Kim, Chip-based detection of hepatitis C virus using RNA aptamers that specifically bind to HCV core antigen, Biochem. Biophys. Res. Commun. 358 (2007) 47–52.
[200] R. Wang, Y. Li, Hydrogel based QCM aptasensor for detection of avian influenzavirus, Biosens. Bioelectron. 42 (2013) 148–155.
[201] R. Yamamoto, M. Katahira, S. Nishikawa, T. Baba, K. Taira, P.K.R. Kumar, A novel RNA motif that binds efficiently and specifically to the Tat protein of HIV and inhibits the trans-activation by Tat of transcription in vitro and in vivo, Genes to Cells. 5 (2000) 371–388.
[202] S. Tombelli, M. Minunni, E. Luzi, M. Mascini, Aptamer-based biosensors for the detection of HIV-1 Tat protein, Bioelectrochemistry. 67 (2005) 135–141.
[203] P.R. Torgerson, B. Devleesschauwer, N. Praet, N. Speybroeck, A.L. Willingham, F. Kasuga, M.B. Rokni, X.-N. Zhou, E.M. Fèvre, B. Sripa, N. Gargouri, T. Fürst, C.M. Budke, H. Carabin, M.D. Kirk, F.J. Angulo, A. Havelaar, N. de Silva, World Health Organization Estimates of the Global and Regional Disease Burden of 11 Foodborne Parasitic Diseases, 2010: A Data Synthesis, PLOS Med. 12 (2015) e1001920.
[204], No Title, (n.d.)
[205] D. Bell, C. Wongsrichanalai, J.W. Barnwell, Ensuring quality and access for malaria diagnosis: how can it be achieved?, Nat. Rev. Microbiol. 4 (2006) 682–695.
[206] T. Hänscheid, M.P. Grobusch, How useful is PCR in the diagnosis of malaria?, Trends Parasitol. 18 (2002) 395–398.
[207] S. Lee, K.-M. Song, W. Jeon, H. Jo, Y.-B. Shim, C. Ban, A highly sensitive aptasensor towards Plasmodium lactate dehydrogenase for the diagnosis of malaria, Biosens. Bioelectron. 35 (2012) 291–296.
[208] E. Scallan, R.M. Hoekstra, F.J. Angulo, R. V. Tauxe, M.-A. Widdowson, S.L. Roy, J.L. Jones, P.M. Griffin, Foodborne illness acquired in the United States—major pathogens, Emerg. Infect. Dis. 17 (2011) 7–15.
[209], (n.d.)
[210] U. Ryan, R. Fayer, L. Xiao, Cryptosporidium species in humans and animals: current understanding and research needs, Parasitology. 141 (2014) 1667–1685.
[211] S.P. Buckwalter, L.M. Sloan, S.A. Cunningham, M.J. Espy, J.R. Uhl, M.F. Jones, E.A. Vetter, J. Mandrekar, F.R. Cockerill, B.S. Pritt, R. Patel, N.L. Wengenack, Inhibition controls for qualitative real-time PCR assays: are they necessary for all specimen matrices?, J. Clin. Microbiol. 52 (2014) 2139–2143.
[212] M. Labib, M. V. Berezovski, Electrochemical aptasensors for microbial and viral pathogens, in: 2013: pp. 155–181.
[213] A. Iqbal, M. Labib, D. Muharemagic, S. Sattar, B.R. Dixon, M. V. Berezovski, Detection of Cryptosporidium parvum Oocysts on fresh produce using DNA aptamers, PLoS One. 10 (2015) e0137455.
[214], (n.d.)
[215] L. Wu, X. Qu, Cancer biomarker detection: recent achievements and challenges, Chem. Soc. Rev. 44 (2015) 2963–2997.
[216] B. Sarkar, J. Dosch, D.M. Simeone, Cancer stem cells: A new theory regarding a timeless disease, Chem. Rev. 109 (2009) 3200–3208.
[217] B. Davidson, H.P. Dong, A. Holth, A. Berner, B. Risberg, Flow cytometric immunophenotyping of cancer cells in effusion specimens: Diagnostic and research applications, Diagn. Cytopathol. 35 (2007) 568–578.
[218] I. Alevizos, M. Mahadevappa, X. Zhang, H. Ohyama, Y. Kohno, M. Posner, G.T. Gallagher, M. Varvares, D. Cohen, D. Kim, R. Kent, R.B. Donoff, R. Todd, C.M. Yung, J.A. Warrington, D.T.W. Wong, Oral cancer in vivo gene expression profiling assisted by laser capture microdissection and microarray analysis, Oncogene. 20 (2001) 6196–6204.
[219] B.S. Ghossein RA, Molecular detection and characterisation of circulating tumour cells and micrometastases in solid tumours., Eur J Cancer. 36 (2000) 1681–94
[220] K. Xiao, J. Liu, H. Chen, S. Zhang, J. Kong, A label-free and high-efficient GO-based aptasensor for cancer cells based on cyclic enzymatic signal amplification, Biosens. Bioelectron. 91 (2017) 76–81.
[221] M. Vestergaard, K. Kerman, E. Tamiya, An Overview of Label-free electrochemical protein sensors, Sensors. 7 (2007) 3442–3458.
[222] C.-H. Pui, M. V. Relling, J.R. Downing, Acute lymphoblastic leukemia, N. Engl. J. Med. 350 (2004) 1535–1548.
[223] G.S. Zamay, T.N. Zamay, V.A. Kolovskii, A. V. Shabanov, Y.E. Glazyrin, D. V. Veprintsev, A. V. Krat, S.S. Zamay, O.S. Kolovskaya, A. Gargaun, A.E. Sokolov, A.A. Modestov, I.P. Artyukhov, N. V. Chesnokov, M.M. Petrova, M. V. Berezovski, A.S. Zamay, Electrochemical aptasensor for lung cancer-related protein detection in crude blood plasma samples, Sci. Rep. 6 (2016) 34350.
[224], (n.d.)
[225] K. Hashimoto, S. Noguchi, Y. Morimoto, S. Hamada, K. Wasada, S. Imai, Y. Murata, S. Kasayama, M. Koga, A1C but not serum glycated albumin is elevated in late pregnancy owing to iron deficiency, Diabetes Care. 31 (2008) 1945–1948.
[226] C. Apiwat, P. Luksirikul, P. Kankla, P. Pongprayoon, K. Treerattrakoon, K. Paiboonsukwong, S. Fucharoen, T. Dharakul, D. Japrung, Graphene based aptasensor for glycated albumin in diabetes mellitus diagnosis and monitoring, Biosens. Bioelectron. 82 (2016) 140–145.
[227] N. Varghese, U. Mogera, A. Govindaraj, A. Das, P.K. Maiti, A.K. Sood, C.N.R. Rao, Binding of DNA nucleobases and nucleosides with graphene, ChemPhysChem. 10 (2009) 206–210.
[228] B. Liu, S. Salgado, V. Maheshwari, J. Liu, DNA adsorbed on graphene and graphene oxide: Fundamental interactions, desorption and applications, Curr. Opin. Colloid Interface Sci. 26 (2016) 41–49.
[229] S. Ghosh, D. Datta, M. Cheema, M. Dutta, M.A. Stroscio, Aptasensor based optical detection of glycated albumin for diabetes mellitus diagnosis, Nanotechnology. 28 (2017) 435505.
[230] T.P. Peacock, Z.K. Shihabi, A.J. Bleyer, E.L. Dolbare, J.R. Byers, M.A. Knovich, J. Calles-Escandon, G.B. Russell, B.I. Freedman, Comparison of glycated albumin and hemoglobin A1c levels in diabetic subjects on hemodialysis, Kidney Int. 73 (2008) 1062–1068.
[231] M. Koga, Glycated albumin; clinical usefulness, Clin. Chim. Acta. 433 (2014) 96–104.
[232] T. Kohzuma, T. Yamamoto, Y. Uematsu, Z.K. Shihabi, B.I. Freedman, Basic performance of an enzymatic method for glycated albumin and reference range determination, J. Diabetes Sci. Technol. 5 (2011) 1455–1462.
[233] Y. Kasahara, S. Kitadume, K. Morihiro, M. Kuwahara, H. Ozaki, H. Sawai, T. Imanishi, S. Obika, Effect of 3′-end capping of aptamer with various 2′,4′-bridged nucleotides: Enzymatic post-modification toward a practical use of polyclonal aptamers, Bioorg. Med. Chem. Lett. 20 (2010) 1626–1629.
[234] J. Ruckman, L.S. Green, J. Beeson, S. Waugh, W.L. Gillette, D.D. Henninger, L. Claesson-Welsh, N. Janjic, 2′-Fluoropyrimidine RNA-based aptamers to the 165-amino acid form of vascular endothelial growth factor (VEGF 165 ), J. Biol. Chem. 273 (1998) 20556–20567.
[235] B. Wlotzka, S. Leva, B. Eschgfaller, J. Burmeister, F. Kleinjung, C. Kaduk, P. Muhn, H. Hess-Stumpp, S. Klussmann, In vivo properties of an anti-GnRH Spiegelmer: An example of an oligonucleotide-based therapeutic substance class, Proc. Natl. Acad. Sci. 99 (2002) 8898–8902.
[236] P. Kalra, A. Dhiman, W.C. Cho, J.G. Bruno, T.K. Sharma, Simple methods and rational design for enhancing aptamer sensitivity and specificity, Front. Mol. Biosci. 5 (2018).