Microbial Fuel Cell Operating Conditions


Microbial Fuel Cell Operating Conditions

Naveen Patel, Dhananjai Rai, MD. Zafar Ali Khan, Shivam Soni, Umesh Mishra, Biswanath Bhunia

The exploitation of fossil fuels such as coal, oil, and gas have been increasing and is creating a worldwide energy crisis. Because of global environmental concerns about pollution and energy uncertainty, sustainable and clean energy resources are needed to be investigated. Microbial fuel cell (MFC) is such a technology, which uses organic compounds and converts it into electrical energy through catalytic reactions by microorganisms. The electricity generation efficiency of MFC is greatly influenced by various physical and chemical parameters i.e. operating conditions like temperature, pH, type of oxidant, electrode surface area, electrolyte conductivity and substrate, etc.

MFC, Operating Condition, Substrate, Oxidant, Electrode, Conductivity

Published online 2/21/2019, 22 pages

Citation: Naveen Patel, Dhananjai Rai, MD. Zafar Ali Khan, Shivam Soni, Umesh Mishra, Biswanath Bhunia, Microbial Fuel Cell Operating Conditions, Materials Research Foundations, Vol. 46, pp 53-74, 2019

DOI: http://dx.doi.org/10.21741/9781644900116-3

Part of the book on Microbial Fuel Cells

[1] K. Chandrasekhar, K. Amulya, S.V. Mohan, Solid phase bio-electrofermentation of food waste to harvest value-added products associated with waste remediation, Waste Manag. 45 (2015) 57-65. https://doi.org/10.1016/j.wasman.2015.06.001
[2] B.E. Logan, B. Hamelers, R. Rozendal, U. Schröder, J. Keller, S. Freguia, P. Aelterman, W. Verstraete, K. Rabaey, Microbial fuel cells: methodology and technology, Environ Sci. Technol. 40 (2006) 5181-5192. https://doi.org/10.1021/es0605016
[3] S.E. Oh, B.E. Logan, Proton exchange membrane and electrode surface areas as factors that affect power generation in microbial fuel cells, Appl. Microbiol. Biotechnol. 70 (2006) 162-169. https://doi.org/10.1007/s00253-005-0066-y
[4] D.H. Park, J.G. Zeikus, Improved fuel cell and electrode designs for producing electricity from microbial degradation, Biotechnol. Bioeng. 81 (2003) 348-355. https://doi.org/10.1002/bit.10501
[5] Y. Fan, H. Hu, H. Liu, Enhanced Coulombic efficiency and power density of air-cathode microbial fuel cells with an improved cell configuration, J. Power Sources. 171 (2007) 348-354. https://doi.org/10.1016/j.jpowsour.2007.06.220
[6] H. Liu, S. Cheng, B.E. Logan, Power generation in fed-batch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration, Environ. Sci. Technol. 39 (2005) 5488-5493. https://doi.org/10.1021/es050316c
[7] R.A. Rozendal, H.V. Hamelers, K. Rabaey, J. Keller, C.J. Buisman, owards practical implementation of bioelectrochemical wastewater treatment, Trends Biotechnol. 26 (2008) 450-459. https://doi.org/10.1016/j.tibtech.2008.04.008
[8] H.I. Park, U. Mushtaq, D. Perello, I. Lee, S.K. Cho, A. Star, M. Yun, Effective and low-cost platinum electrodes for microbial fuel cells deposited by electron beam evaporation, Energy Fuels. 21 (2007) 2984-2990. https://doi.org/10.1021/ef070160x
[9] Z. Yan, M. Wang, J. Liu, R. Liu, J. Zhao, Glycerol-stabilized NaBH4 reduction at room-temperature for the synthesis of a carbon-supported PtxFe alloy with superior oxygen reduction activity for a microbial fuel cell, Electrochim. Acta. 141 (2014) 331-339. https://doi.org/10.1016/j.electacta.2014.06.137
[10] X. Li, B. Hu, S. Suib, Y. Lei, B. Li, Manganese dioxide as a new cathode catalyst in microbial fuel cells, J. Power Sources. 195 (2010) 2586-2591. https://doi.org/10.1016/j.jpowsour.2009.10.084
[11] S. Cheng, H. Liu, B.E. Logan, Power densities using different cathode catalysts (Pt and CoTMPP) and polymer binders (Nafion and PTFE) in single chamber microbial fuel cells, technology, Environ. Sci. Technol. 40 (2006) 364-369. https://doi.org/10.1021/es0512071
[12] B. Min, B.E. Logan, Continuous electricity generation from domestic wastewater and organic substrates in a flat plate microbial fuel cell, Environ. Sci. Technol. 38 (2004) 5809-5814. https://doi.org/10.1021/es0491026
[13] S. Freguia, K. Rabaey, Z. Yuan, J. Keller, Non-catalyzed cathodic oxygen reduction at graphite granules in microbial fuel cells, Electrochim. Acta. 53 (2007) 598-603. https://doi.org/10.1016/j.electacta.2007.07.037
[14] N. Duteanu, B. Erable, S.S. Kumar, M.M. Ghangrekar, K. Scott, Effect of chemically modified Vulcan XC-72R on the performance of air-breathing cathode in a single-chamber microbial fuel cell, Bioresour. Technol. 101 (2010) 5250-5255. https://doi.org/10.1016/j.biortech.2010.01.120
[15] B.E. Logan, Microbial fuel cells, John Wiley & Sons. Inc., New Jersey. 2007. https://doi.org/10.1002/9780470258590
[16] S.K. Chaudhuri, D.R. Lovley, Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells, Nat. Biotechnol. 21 (2003) 1229. https://doi.org/10.1038/nbt867
[17] Y. Ahn, B.E. Logan, Altering anode thickness to improve power production in microbial fuel cells with different electrode distances, Energy Fuels. 27 (2012) 271-276. https://doi.org/10.1021/ef3015553
[18] B. Logan, S. Cheng, V. Watson, G. Estadt, Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells, Environ. Sci. Technol. 41 (2007) 3341-3346. https://doi.org/10.1021/es062644y
[19] E. Guerrini, P. Cristiani, M. Grattieri, C. Santoro, B. Li, S. Trasatti, Electrochemical behavior of stainless steel anodes in membraneless microbial fuel cells, J. Electrochem. Soc. 161 (2014) H62-H67. https://doi.org/10.1149/2.096401jes
[20] R. Thorne, H. Hu, K. Schneider, P. Bombelli, A. Fisher, L.M. Peter, A. Dent, P.J. Cameron, Porous ceramic anode materials for photo-microbial fuel cells, J. Mater. Chem. 21 (2011) 18055-18060. https://doi.org/10.1039/c1jm13058g
[21] C. Dumas, A. Mollica, D. Féron, R. Basséguy, L. Etcheverry, A. Bergel, Marine microbial fuel cell: use of stainless steel electrodes as anode and cathode materials, Electrochim. Acta. 53 (2007) 468-473. https://doi.org/10.1016/j.electacta.2007.06.069
[22] H. Richter, K. McCarthy, K.P. Nevin, J.P. Johnson, V.M. Rotello, D.R. Lovley, Electricity generation by Geobacter sulfurreducens attached to gold electrodes, Langmuir. 24 (2008) 4376-4379. https://doi.org/10.1021/la703469y
[23] S. Cheng, B.E. Logan, Ammonia treatment of carbon cloth anodes to enhance power generation of microbial fuel cells, Electrochem. Commun. 9 (2007) 492-496. https://doi.org/10.1016/j.elecom.2006.10.023
[24] H.-Y. Tsai, C.-C. Wu, C.-Y. Lee, E.P. Shih, Microbial fuel cell performance of multiwall carbon nanotubes on carbon cloth as electrodes, J. Power Sources. 194 (2009) 199-205. https://doi.org/10.1016/j.jpowsour.2009.05.018
[25] Y. Qiao, C.M. Li, S.J. Bao, Q.L. Bao, Carbon nanotube/polyaniline composite as anode material for microbial fuel cells, J. Power Sources. 170 (2007) 79-84. https://doi.org/10.1016/j.jpowsour.2007.03.048
[26] Z. He, S.D. Minteer, L.T. Angenent, Electricity generation from artificial wastewater using an upflow microbial fuel cell, Environ. Sci. Technol. 39 (2005) 5262-5267. https://doi.org/10.1021/es0502876
[27] Y. Feng, Q. Yang, X. Wang, B.E. Logan, Treatment of carbon fiber brush anodes for improving power generation in air–cathode microbial fuel cells, J. Power Sources. 195 (2010) 1841-1844. https://doi.org/10.1016/j.jpowsour.2009.10.030
[28] D.A. Lowy, L.M. Tender, Harvesting energy from the marine sediment–water interface: III. Kinetic activity of quinone-and antimony-based anode materials, J. Power Sources. 185 (2008) 70-75. https://doi.org/10.1016/j.jpowsour.2008.06.079
[29] K. Guo, A. Prévoteau, S.A. Patil, K. Rabaey, Engineering electrodes for microbial electrocatalysis, Curr. Opin. Biotechnol. 33 (2015) 149-156. https://doi.org/10.1016/j.copbio.2015.02.014
[30] K. Wang, Y. Liu, S. Chen, Improved microbial electrocatalysis with neutral red immobilized electrode, J. Power Sources. 196 (2011) 164-168. https://doi.org/10.1016/j.jpowsour.2010.06.056
[31] S. Kondaveeti, J. Lee, R. Kakarla, H.S. Kim, B. Min, Low-cost separators for enhanced power production and field application of microbial fuel cells (MFCs), Electrochim. Acta. 132 (2014) 434-440. https://doi.org/10.1016/j.electacta.2014.03.046
[32] S. Choi, J.R. Kim, J. Cha, Y. Kim, G.C. Premier, C. Kim, Enhanced power production of a membrane electrode assembly microbial fuel cell (MFC) using a cost effective poly [2, 5-benzimidazole](ABPBI) impregnated non-woven fabric filter, Bioresour. Technol. 128 (2013) 14-21. https://doi.org/10.1016/j.biortech.2012.10.013
[33] J. Sun, Y. Hu, Z. Bi, Y. Cao, Improved performance of air-cathode single-chamber microbial fuel cell for wastewater treatment using microfiltration membranes and multiple sludge inoculation, J. Power Sources. 187 (2009) 471-479. https://doi.org/10.1016/j.jpowsour.2008.11.022
[34] B. Min, J. Kim, S. Oh, J.M. Regan, B.E. Logan, Electricity generation from swine wastewater using microbial fuel cells, Water Res. 39 (2005) 4961-4968. https://doi.org/10.1016/j.watres.2005.09.039
[35] J.R. Kim, S. Cheng, S.-E. Oh, B.E. Logan, Power generation using different cation, anion, and ultrafiltration membranes in microbial fuel cells, Environ. Sci. Technol. 41 (2007) 1004-1009. https://doi.org/10.1021/es062202m
[36] S. Cheng, H. Liu, B.E. Logan, Increased performance of single-chamber microbial fuel cells using an improved cathode structure, Electrochem. Commun. 8 (2006) 489-494. https://doi.org/10.1016/j.elecom.2006.01.010
[37] Z. He, N. Wagner, S.D. Minteer, L.T. Angenent, An upflow microbial fuel cell with an interior cathode: assessment of the internal resistance by impedance spectroscopy, Environ. Sci. Technol. 40 (2006) 5212-5217. https://doi.org/10.1021/es060394f
[38] S. Ayyaru, S. Dharmalingam, Improved performance of microbial fuel cells using sulfonated polyether ether ketone (SPEEK) TiO2–SO3H nanocomposite membrane, RSC Adv. 3 (2013) 25243-25251. https://doi.org/10.1039/c3ra44212h
[39] I. Ieropoulos, J. Greenman, C. Melhuish, Improved energy output levels from small-scale microbial fuel cells, Bioelectrochemistry. 78 (2010) 44-50. https://doi.org/10.1016/j.bioelechem.2009.05.009
[40] W.W. Li, G.P. Sheng, X.W. Liu, H.Q. Yu, Recent advances in the separators for microbial fuel cells, Bioresour. Technol. 102 (2011) 244-252. https://doi.org/10.1016/j.biortech.2010.03.090
[41] F. Harnisch, U. Schröder, F. Scholz, The suitability of monopolar and bipolar ion exchange membranes as separators for biological fuel cells, Environ. Sci. Technol. 42 (2008) 1740-1746. https://doi.org/10.1021/es702224a
[42] Y. Zuo, S. Cheng, D. Call, B.E. Logan, Tubular membrane cathodes for scalable power generation in microbial fuel cells, Environ Sci Technol. 41 (2007) 3347-3353. https://doi.org/10.1021/es0627601
[43] J. Moon, S. Kondaveeti, B. Min, Evaluation of lowcost separators for increased power generation in single chamber microbial fuel cells with membrane electrode assembly, Fuel Cells. 15 (2015) 230-238. https://doi.org/10.1002/fuce.201400036
[44] J.M. Moon, S. Kondaveeti, T.H. Lee, Y.C. Song, B. Min, Minimum interspatial electrode spacing to optimize air-cathode microbial fuel cell operation with a membrane electrode assembly, Bioelectrochem. 106 (2015) 263-267. https://doi.org/10.1016/j.bioelechem.2015.07.011
[45] A. Larrosa-Guerrero, K. Scott, I. Head, F. Mateo, A. Ginesta, C. Godinez, Effect of temperature on the performance of microbial fuel cells, Fuel. 89 (2010) 3985-3994. https://doi.org/10.1016/j.fuel.2010.06.025
[46] Y. Liu, V. Climent, A. Berna, J.M. Feliu, Effect of temperature on the catalytic ability of electrochemically active biofilm as anode catalyst in microbial fuel cells, Electroanal. 23 (2011) 387-394. https://doi.org/10.1002/elan.201000499
[47] B. Min, Ó.B. Román, I. Angelidaki, Importance of temperature and anodic medium composition on microbial fuel cell (MFC) performance, Biotechnol. Lett. 30 (2008) 1213-1218. https://doi.org/10.1007/s10529-008-9687-4
[48] Z. Li, X. Zhang, Y. Zeng, L. Lei, Electricity production by an overflow-type wetted-wall microbial fuel cell, Bioresour. Technol. 100 (2009) 2551-2555. https://doi.org/10.1016/j.biortech.2008.12.018
[49] D. Pant, G. Van Bogaert, L. Diels, K. Vanbroekhoven, A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production, Bioresour. Technol. 101 (2010) 1533-1543. https://doi.org/10.1016/j.biortech.2009.10.017
[50] K.-J. Chae, M.-J. Choi, J.-W. Lee, K.-Y. Kim, I.S. Kim, Effect of different substrates on the performance, bacterial diversity, and bacterial viability in microbial fuel cells, Bioresour. Technol. 100 (2009) 3518-3525. https://doi.org/10.1016/j.biortech.2009.02.065
[51] Y. Fan, E. Sharbrough, H. Liu, Quantification of the internal resistance distribution of microbial fuel cells, Environ. Sci. Technol. 42 (2008) 8101-8107. https://doi.org/10.1021/es801229j
[52] S. Cheng, B.E. Logan, Increasing power generation for scaling up single-chamber air cathode microbial fuel cells, Bioresour. Technol. 102 (2011) 4468-4473. https://doi.org/10.1016/j.biortech.2010.12.104
[53] V. Vologni, R. Kakarla, I. Angelidaki, B. Min, Increased power generation from primary sludge by a submersible microbial fuel cell and optimum operational conditions, Bioprocess Biosyst. Eng. 36 (2013) 635-642. https://doi.org/10.1007/s00449-013-0918-2
[54] R. Kakarla, J.R. Kim, B.-H. Jeon, B. Min, Enhanced performance of an air–cathode microbial fuel cell with oxygen supply from an externally connected algal bioreactor, Bioresour. Technol. 195 (2015) 210-216. https://doi.org/10.1016/j.biortech.2015.06.062
[55] R. Kakarla, B. Min, Evaluation of microbial fuel cell operation using algae as an oxygen supplier: carbon paper cathode vs. carbon brush cathode, Bioprocess Biosyst. Eng. 37 (2014) 2453-2461. https://doi.org/10.1007/s00449-014-1223-4
[56] R. Kakarla, B. Min, Photoautotrophic microalgae Scenedesmus obliquus attached on a cathode as oxygen producers for microbial fuel cell (MFC) operation, Int. J. Hydrog. Energy. 39 (2014) 10275-10283. https://doi.org/10.1016/j.ijhydene.2014.04.158
[57] Z. He, Y. Huang, A.K. Manohar, F. Mansfeld, Effect of electrolyte pH on the rate of the anodic and cathodic reactions in an air-cathode microbial fuel cell, Bioelectrochem. 74 (2008) 78-82. https://doi.org/10.1016/j.bioelechem.2008.07.007
[58] Y. Zhang, B. Min, L. Huang, I.J.A. Angelidaki, Generation of electricity and analysis of microbial communities in wheat straw biomass-powered microbial fuel cells, Appl. Environ. Microbiol. 75 (2009) 3389-3395. https://doi.org/10.1128/AEM.02240-08
[59] T. Akiba, H. Bennetto, J. Stirling, K. Tanaka, Electricity production from alkalophilic organisms, Biotechnol. Lett. 9 (1987) 611-616. https://doi.org/10.1007/BF01033196
[60] S. You, Q. Zhao, J. Zhang, J. Jiang, S. Zhao, A microbial fuel cell using permanganate as the cathodic electron acceptor, J. Power Sources. 162 (2006) 1409-1415. https://doi.org/10.1016/j.jpowsour.2006.07.063
[61] S.V. Mohan, S.V. Raghavulu, D. Peri, P.N. Sarma, Bioelectronics, Integrated function of microbial fuel cell (MFC) as bio-electrochemical treatment system associated with bioelectricity generation under higher substrate load, Biosen. Bioelect. 24 (2009) 2021-2027. https://doi.org/10.1016/j.bios.2008.10.011
[62] L. Wei, H. Han, J. Shen, Effects of cathodic electron acceptors and potassium ferricyanide concentrations on the performance of microbial fuel cell, Int. J. Hydrog. Energy. 37 (2012) 12980-12986. https://doi.org/10.1016/j.ijhydene.2012.05.068
[63] H. L. Song, Y. Zhu, J. Li, Electron transfer mechanisms, characteristics and applications of biological cathode microbial fuel cells–A mini review, Arab. J. Chem (2015). https://doi.org/10.1016/j.arabjc.2015.01.008
[64] J. Jiang, Q. Zhao, J. Zhang, G. Zhang, D.J. Lee, Electricity generation from bio-treatment of sewage sludge with microbial fuel cell, Bioresour. Technol. 100 (2009) 5808-5812. https://doi.org/10.1016/j.biortech.2009.06.076