Biofuels from Food Processing Wastes


Biofuels from Food Processing Wastes

Rouf Ahmad Dar, Mudasir Yaqoob, Manisha Parmar, Urmila Gupta Phutela

Food processing wastes (FPWs) are produced in large quantity. The issue of waste is increasing unabatingly and is posing a threat to the environment. The management of these wastes is needed. FPWs are managed through various approaches; however, the biofuel production is the most feasible solution and alluring the researchers across the globe as it furnishes a substantial alternative to conventional fuels, thus reducing the greenhouse emissions significantly. It is a worthwhile means of utilizing food processing wastes compared to other valorisation processes. This chapter reviews the status of FPWs across the globe, biofuel production from food processing wastes, factors affecting and strategies for enhancing biofuel production from food processing wastes.

Food Processing Wastes, Biofuel, Conventional Fuels, Greenhouse Emissions, Environment

Published online 2/21/2019, 40 pages

Citation: Rouf Ahmad Dar, Mudasir Yaqoob, Manisha Parmar, Urmila Gupta Phutela, Biofuels from Food Processing Wastes, Materials Research Foundations, Vol. 46, pp 249-288, 2019


Part of the book on Microbial Fuel Cells

[1] S. Li, X. Yang, Biofuel production from food wastes, in: R.Luque, C.S.K. Lin, K. Wilson, J. Clark (Eds.), Handbook of Biofuels Production, Woodhead Publishing, Elsevier, Duxford CB22 4QH, UK, 2016, pp. 617–653.
[2] S. Zorya, N. Morgan, L.D. Rios, R. Hodges, B. Bennet, Missing food : The case of postharvest grain losses in sub-saharan Africa. of-postharvest-grain-losses-in-Sub-Saharan-Africa, 2011 (11 October 2018).
[3] FAO, Food wastage footprint: full cost-accounting., 2014 (7 October 2018).
[4] R. Dobbs, J. Oppenheim, F. Thompson, M. Brinkman, M. Zomes, Resource Revolution : Meeting the world’s energy, materials, food, and water needs. McKinsey Global Institue. Https:// revolution, 2011 (3 September 2018).
[5] C.S.K. Lin, L.A. Pfaltzgraff, L. Herrero-Davila, E.B. Mubofu, S. Abderrahim, J.H. Clark, A.A. Koutinas, N. Kopsahelis, K. Stamatelatou, F. Dickson, S. Thankappan, Z. Mohamed, R. Brocklesby, R. Luque, Food waste as a valuable resource for the production of chemicals, materials and fuels. Current situation and global perspective, Energy Environ. Sci. 6 (2013) 426–464.
[6] H. Ma, Q. Wang, D. Qian, L. Gong, W. Zhang, The utilization of acid-tolerant bacteria on ethanol production from kitchen garbage, Renew. Energy. 34 (2009) 1466–1470.
[7] E. Uçkun Kiran, A.P. Trzcinski, W.J. Ng, Y. Liu, Bioconversion of food waste to energy: A review, Fuel. 134 (2014) 389–399.
[8] C. Zhang, G. Xiao, L. Peng, H. Su, T. Tan, The anaerobic co-digestion of food waste and cattle manure, Bioresour. Technol. 129 (2013) 170–176.
[9] F. Girotto, L. Alibardi, R. Cossu, Food waste generation and industrial uses: A review, Waste Manag. 45 (2015) 32–41.
[10] K.Waldron, Handbook of Waste Management and Co-Product Recovery in Food Processing, 1st ed., Woodhead Publishing Limited: Cambridge, UK, 2007.
[11] W. Russ, R. Meyer-Pittroff, Utilizing Waste Products from the Food Production and Processing Industries, Crit. Rev. Food Sci. Nutr. 44 (2004) 57–62.
[12] USEPA, Industrial food processing waste analyses. Https:// 2011(accessed 13 September 2018).
[13] J.K. Sahu, Introduction to Advanced Food Processing Engineering, ist ed., CRC Press, Taylor & Francis Group, 2016.
[14] N. Pap, E. Pongrácz, L. Myllykoski, R. Keiski, Waste minimization and utilization in the food industry, in J.K. Sahu Introduction to Advanced Food Processing Engineering, ist ed., CRC Press, Taylor & Francis Group, 2016. pp. 595–630.
[15] A.R. Prazeres, F. Carvalho, J. Rivas, Cheese whey management: A review, J. Environ. Manage. 110 (2012) 48–68.
[16] P. B. Helkar, A. Sahoo, N. Patil, Review: food industry by-products used as a functional food ingredients, Int. J. Waste Resour. 6 (2016) 1–6.
[17] FAO, Key facts on food loss and waste you should know! Save food: global initiative on food loss and waste reduction, Food and Agriculture Organization of the United Nations. Http://, 2012 (accessed 30 August 2018).
[18] Statista, The Statistics Portal, Share of food loss/waste in North America and Oceania in 2015, by type. Https://, 2015. (accessed August 29, 2018).
[19] Å. Stenmark, C. Jensen, T. Quested, G. Moates, Estimates of European food waste levels., 2016.
[20] Statista, The Statistics Portal, Share of food loss/waste globally in 2015, by type. Https://, 2015 (accessed 30 August 2018).
[21] Federal Office for the Environment (FOEN), Food waste. Https://,2018 (accessed 30 August 2018).
[22] Ministry of Food Processing Industries (MOFPI), Annual Report 2016-17, 2015 (accessed 24 August 2018).
[23] S. Hegde, J.S. Lodge, T.A. Trabold, Characteristics of food processing wastes and their use in sustainable alcohol production, Renew. Sustain. Energy Rev. 81 (2018) 510–523.
[24] W. Qasim, A. V. Mane, Characterization and treatment of selected food industrial effluents by coagulation and adsorption techniques, Water Resour. Ind. 4 (2013) 1–12.
[25] V.K. Joshi, A. Pandey, D.K. Sandhu, Fermentation technology for food industry waste utilization. In: V.K. Joshi, P Ashok (Eds.), Biotechnology: food fermentation, microbiology, biochemistry and technology, vol II., Educational Publishers and Distributors, New Delhi, 1999, pp. 1291-1348.
[26] N. Mirabella, V. Castellani, S. Sala, Current options for the valorization of food manufacturing waste: a review, J. Clean. Prod. 65 (2014) 28–41.
[27] M.E.M. Mabrouk, A.M.D. El-Ahwany, Production of β-mannanase by Bacillus amylolequifaciens 10A1 cultured on potato peels, Afr. J. Biotechnol. 7 (2008) 1123–1128.
[28] A. Al-Weshahy, V.A. Rao, Potato peel as a source of important phytochemical antioxidant nutraceuticals and their role in human health – A review, in: V. Rao (Ed.), Phytochemicals as Nutraceuticals – Global Approaches to Their Role in Nutrition and Health InTech, 2012: pp. 207–224.
[29] A.M. Mullen, C. Álvarez, M. Pojić, T.D. Hadnadev, M. Papageorgiou, Classification and target compounds, in: C. Galanakis (Ed.), Food Waste Recovery Academic Press, Elsevier, 2015, pp. 25–57.
[30] B.K. Tiwari, A. Gowen, B.M. McKenna, Pulse foods : processing, quality and nutraceutical applications, first ed., Academic Press, Elsevier, 2011.
[31] T.K. Girish, V.M. Pratape, U.J.S. Prasada Rao, Nutrient distribution, phenolic acid composition, antioxidant and alpha-glucosidase inhibitory potentials of black gram (Vigna mungo L.) and its milled by-products, Food Res. Int. 46 (2012) 370–377.
[32] A.M. Sharoba, M.A. Farrag, A. El-Salam, Utilization of some fruits and vegetables waste as a source of dietary fiber and its effect on the cake making and its quality attributes, J. Agroaliment. Process. Technol. 19 (2013) 429–444.
[33] W. Kosoom, N. Charoenwattanasakun, Y. Ruangpanit, S. Rattanatabtimtong, S. Attamangkune, Physical, chemical and biological properties of cassava pulp, in: 47th Kasetsart Univ. Annu. Conf. Kasetsart, Kasetsart, 2015, pp. 117–124.
[34] B.H. Kiepper, W.C. Merka, D.L. Fletcher, Proximate composition of poultry processing wastewater particulate matter from broiler slaughter plants, Poult. Sci. 87 (2008) 1633–1636.
[35] B.J. Akinyele, O.O. Olaniyi, D.J. Arotupin, Bioconversion of selected agricultural wastes and associated enzymes by volvariella volvacea: an edible mushroom, Res. J. Microbiol. 6 (2011) 63–70.
[36] A.P. Sánchez-Camargo, M.Â. Almeida Meireles, B.L.F. Lopes, F.A. Cabral, Proximate composition and extraction of carotenoids and lipids from Brazilian redspotted shrimp waste (Farfantepenaeus paulensis), J. Food Eng. 102 (2011) 87–93.
[37] H.A. Hashem, M.M. Abul-Fadl, M.T.M. Assous, M.S.M.A. Abo-Zaid, Improvement the nutritional value of especial biscuits (children school meal) by using some fruits and vegetables, J. Appl. Sci. Res. 9 (2013) 5679–5691.
[38] P.G. Dalev, Utilisation of waste feathers from poultry slaughter for production of a protein concentrate, Bioresour. Technol. 48 (1994) 265–267.
[39] S. Damodaran, K.L. Parkin, O.R. Fennema, Fennema’s food chemistry, fourth ed., CRC Press, New York, 2007.
[40] D. Deublein, A. Steinhauser, Biogas from Waste and Renewable resources: An Introduction, Wiley VCH, Weinheim, 2008.
[41] P. Thassitou, I. Arvanitoyannis, Bioremediation: a novel approach to food waste management, Trends Food Sci. Technol. 12 (2001) 185–196.
[42] M.R. Kosseva, Sources, characterization, and composition of food industry wastes, in: M.R. Kosseva, C. Webb (Eds.), Food Industry Wastes, Elsevier, London UK, 2013, pp. 37–60.
[43] M. Hutnan, M. Hornak, I. Bodík, V. Hlavacka, Anaerobic treatment of wheat stillage, Chem. Biochem. Eng. 17 (2003) 233–241.
[44] E. Cibis, C.A. Kent, M. Krzywonos, Z. Garncarek, B. Garncarek, T. Miśkiewicz, Biodegradation of potato slops from a rural distillery by thermophilic aerobic bacteria, Bioresour. Technol. 85 (2002) 57–61.
[45] H. Panda, The Complete Book on Managing Food Processing Industry Waste, first edition., National Institute of Industrial Research, New Delhi, 2011.
[46] T. Baysal, S. Ersus, D.A.J. Starmans, Supercritical CO2 extraction of β-carotene and lycopene from tomato paste waste, J. Agric. Food Chem. 48 (2000) 5507–5511.
[47] A. Schieber, F. Stintzing, R. Carle, By-products of plant food processing as a source of functional compounds—recent developments, Trends Food Sci. Technol. 12 (2001) 401–413.
[48] İ. Çinar, Effects of cellulase and pectinase concentrations on the colour yield of enzyme extracted plant carotenoids, Process Biochem. 40 (2005) 945–949.
[49] N.S. Salim, A. Singh, V. Raghavan, Potential utilization of fruit and vegetable wastes for food through drying or extraction techniques, Nov Tech Nutr. Food Sci. 1 (2017) 1–12.
[50] I. Erlund, Review of the flavonoids quercetin, hesperetin, and naringenin. Dietary sources, bioactivities, bioavailability, and epidemiology, Nutr. Res. 24 (2004) 851–874.
[51] H. Tapiero, D.M. Townsend, K.D. Tew, Organosulfur compounds from alliaceae in the prevention of human pathologies, Biomed. Pharmacother. 58 (2004) 183–193.
[52] R. Llorach, F.A. Tomás-Barberán, F. Ferreres, Lettuce and chicory byproducts as a source of antioxidant phenolic extracts, J. Agric. Food Chem. 52 (2004) 5109–5116.
[53] F. Vallejo, A. Gil-Izquierdo, A. Pérez-Vicente, C. García-Viguera, In vitro gastrointestinal digestion study of broccoli inflorescence phenolic compounds, glucosinolates, and vitamin C, J. Agric. Food Chem. 52 (2004) 135–138.
[54] S. Bhushan, K. Kalia, M. Sharma, B. Singh, P.S. Ahuja, Processing of apple pomace for bioactive molecules, Crit. Rev. Biotechnol. 28 (2008) 285–296.
[55] B. Aliakbarian, A. Fathi, P. Perego, F. Dehghani, Extraction of antioxidants from winery wastes using subcritical water, J. Supercrit. Fluids. 65 (2012) 18–24.
[56] D. Kammerer, A. Claus, A. Schieber, R. Carle, A novel process for the recovery of polyphenols from grape ( Vitis vinifera L.) Pomace, J. Food Sci. 70 (2005) C157–C163.
[57] Y. Lu, L. Yeap Foo, The polyphenol constituents of grape pomace, Food Chem. 65 (1999) 1–8.
[58] Norland products, Fish Gelatin Products. Https://, 2013 (accessed 30 August 2018).
[59] N. Jabeen, I. Majid, G.A. Nayik, Bioplastics and food packaging: A review, Cogent Food Agric. 1 (2015) 1–6.
[60] V.M. Vučurović, R.N. Razmovski, Sugar beet pulp as support for Saccharomyces cerivisiae immobilization in bioethanol production, Ind. Crops Prod. 39 (2012) 128–134.
[61] Y. Wang, L. Yan, CFD studies on biomass thermochemical conversion, Int. J. Mol. Sci. 9 (2008) 1108–1130.
[62] H.H. Khoo, T.Z. Lim, R.B.H. Tan, Food waste conversion options in Singapore: Environmental impacts based on an LCA perspective, Sci. Total Environ. 408 (2010) 1367–1373.
[63] F.R. McDougall, J.P. Hruska, Report: the use of life cycle inventory tools to support an integrated approach to solid waste management, Waste Manag. Res. 18 (2000) 590–594.
[64] P.A. Caton, M.A. Carr, S.S. Kim, M.J. Beautyman, Energy recovery from waste food by combustion or gasification with the potential for regenerative dehydration: A case study, Energy Convers. Manag. 51 (2010) 1157–1169.
[65] B. Digman, D.S. Kim, Review: Alternative energy from food processing wastes, Environ. Prog. 27 (2008) 524–537.
[66] H.B. Goyal, D. Seal, R.C. Saxena, Bio-fuels from thermochemical conversion of renewable resources: A review, Renew. Sustain. Energy Rev. 12 (2008) 504–517.
[67] N.S. Barman, S. Ghosh, S. De, Gasification of biomass in a fixed bed downdraft gasifier – A realistic model including tar, Bioresour. Technol. 107 (2012) 505–511.
[68] R.C. Brown, T.R. Brown, Biorenewable Resources Engineering: New Products from Agriculture, second ed., Wiley-Blackwell, 2003.
[69] S. Yaman, Pyrolysis of biomass to produce fuels and chemical feedstocks, Energy Convers. Manag. 45 (2004) 651–671.
[70] N. Canabarro, J.F. Soares, C.G. Anchieta, C.S. Kelling, M.A. Mazutti, Thermochemical processes for biofuels production from biomass, Sustain. Chem. Process. 1 (2013) 1-10.
[71] M. Balat, M. Balat, E. Kirtay, H. Balat, Main routes for the thermo-conversion of biomass into fuels and chemicals. Part 1: Pyrolysis systems, Energy Convers. Manag. 50 (2009) 3147–3157.
[72] A. Demirbas, Waste management, waste resource facilities and waste conversion processes, Energy Convers. Manag. 52 (2011) 1280–1287.
[73] N.D. Berge, K.S. Ro, J. Mao, J.R. V. Flora, M.A. Chappell, S. Bae, Hydrothermal carbonization of municipal waste streams, Environ. Sci. Technol. 45 (2011) 5696–5703.
[74] S.K. Hoekman, A. Broch, C. Robbins, Hydrothermal carbonization (HTC) of lignocellulosic biomass, Energy and Fuels. 25 (2011) 1802–1810.
[75] T.P.T. Pham, R. Kaushik, G.K. Parshetti, R. Mahmood, R. Balasubramanian, Food waste-to-energy conversion technologies: Current status and future directions, Waste Manag. 38 (2015) 399–408.
[76] Z. Liu, A. Quek, S. Kent Hoekman, R. Balasubramanian, Production of solid biochar fuel from waste biomass by hydrothermal carbonization, Fuel. 103 (2013) 943–949.
[77] G.K. Parshetti, S. Kent Hoekman, R. Balasubramanian, Chemical, structural and combustion characteristics of carbonaceous products obtained by hydrothermal carbonization of palm empty fruit bunches, Bioresour. Technol. 135 (2013) 683–689.
[78] L. Li, R. Diederick, J.R.V. Flora, N.D. Berge, Hydrothermal carbonization of food waste and associated packaging materials for energy source generation, Waste Manag. 33 (2013) 2478–2492.
[79] L.J. Wang, Production of bioenergy and bioproducts from food processing wastes: a review, Am. Soc.Agr. Biol. Eng. 56 (2013) 217–229.
[80] G.M. Hall, J. Howe, Energy from waste and the food processing industry, Process Saf. Environ. Prot. 90 (2012) 203–212.
[81] H.N. Chanakya, T. V. Ramachandra, M. Vijayachamundeeswari, Resource recovery potential from secondary components of segregated municipal solid wastes, Environ. Monit. Assess. 135 (2007) 119–127.
[82] N. Guermoud, F. Ouadjnia, F. Abdelmalek, F. Taleb, A. Addou, Municipal solid waste in Mostaganem city (Western Algeria), Waste Manag. 29 (2009) 896–902.
[83] V.C. Kalia, V. Sonakya, N. Raizada, Anaerobic digestion of banana stem waste, Bioresour. Technol. 73 (2000) 191–193.
[84] S. Di Berardino, S. Costa, A. Converti, Semi-continuous anaerobic digestion of a food industry wastewater in an anaerobic filter, Bioresour. Technol. 71 (2000) 261–266.
[85] E. Salminen, J. Rintala, Anaerobic digestion of organic solid poultry slaughterhouse waste: A review., Bioresour. Technol. 83 (2002) 13–26.
[86] M.R. Kosseva, Management and Processing of Food Wastes, in M. Moo-Young (Ed.), Comprehensive Biotechnology, Elsevier, B.V., 2011, pp. 557-593.
[87] R. Gebauer, Mesophilic anaerobic treatment of sludge from saline fish farm effluents with biogas production, Bioresour. Technol. 93 (2004) 155–167.
[88] I. Muhammad Nasir, T.I. Mohd Ghazi, R. Omar, Production of biogas from solid organic wastes through anaerobic digestion: a review, Appl. Microbiol. Biotechnol. 95 (2012) 321–329.
[89] Z. Zhang, I.M. O’Hara, S. Mundree, B. Gao, A.S. Ball, N. Zhu, Z. Bai, B. Jin, Biofuels from food processing wastes, Curr. Opin. Biotechnol. 38 (2016) 97–105.
[90] V.H. Perez, E.G. Silveira Junior, D.C. Cubides, G.F. David, O.R. Justo, M.P.P. Castro, M.S. Sthel, H.F. De-Castro, Trends in Biodiesel Production: Present Status and Future Directions, in: S.S. da Silva, A.K. Chandel (Eds.), Biofuels in Brazil, Springer International Publishing, New York, 2014, pp. 281–302.
[91] B. Amigun, F. Müller-Langer, H. von Blottnitz, Predicting the costs of biodiesel production in Africa: learning from Germany, Energy Sustain. Dev. 12 (2008) 5–21.
[92] E.T. Altikriti, A.B. Fadhil, M.M. Dheyab, Two-step base catalyzed transesterification of chicken fat: optimization of parameters, Energy Sources, Part A Recover. Util. Environ. Eff. 37 (2015) 1861–1866.
[93] C. Ofori-boateng, E.M. Kwofie, M.Y. Mensah, Comparative analysis of the effect of different alkaline catalysts on biodiesel yield, world Appl. Sci. J. 16 (2012) 1445–1449.
[94] T. Singhasiri, N. Tantemsapya, Production of biodiesel from food processing waste using response surface methodology, Energy Sources, Part A Recover. Util. Environ. Eff. 38 (2016) 2799–2808.
[95] W. Pietrzak, J. Kawa-Rygielska, Simultaneous saccharification and ethanol fermentation of waste wheat-rye bread at very high solids loading: Effect of enzymatic liquefaction conditions, Fuel. 147 (2015) 236–242.
[96] J.N. Nigam, Continuous ethanol production from pineapple cannery waste using immobilized yeast cells, J. Biotechnol. 80 (2000) 189–193.
[97] J. Ma, T.H. Duong, M. Smits, W. Verstraete, M. Carballa, Enhanced biomethanation of kitchen waste by different pre-treatments, Bioresour. Technol. 102 (2011) 592–599.
[98] A.I. Vavouraki, V. Volioti, M.E. Kornaros, Optimization of thermo-chemical pretreatment and enzymatic hydrolysis of kitchen wastes, Waste Manag. 34 (2014) 167–173.
[99] L. Matsakas, D. Kekos, M. Loizidou, P. Christakopoulos, Utilization of household food waste for the production of ethanol at high dry material content, Biotechnol. Biofuels. 7 (2014) 1–9.
[100] H.S. Oberoi, P. V. Vadlani, A. Nanjundaswamy, S. Bansal, S. Singh, S. Kaur, N. Babbar, Enhanced ethanol production from Kinnow mandarin (Citrus reticulata) waste via a statistically optimized simultaneous saccharification and fermentation process, Bioresour. Technol. 102 (2011) 1593–1601.
[101] L.A. Rodríguez, M.E. Toro, F. Vazquez, M.L. Correa-Daneri, S.C. Gouiric, M.D. Vallejo, Bioethanol production from grape and sugar beet pomaces by solid-state fermentation, Int. J. Hydrogen Energy. 35 (2010) 5914–5917.
[102] P.M.R. Guimarães, J.A. Teixeira, L. Domingues, Fermentation of lactose to bio-ethanol by yeasts as part of integrated solutions for the valorisation of cheese whey, Biotechnol. Adv. 28 (2010) 375–384.
[103] F. Zoppellari, L. Bardi, Production of bioethanol from effluents of the dairy industry by Kluyveromyces marxianus, N. Biotechnol. 30 (2013) 607–613.
[104] R.H.S. Diniz, M.Q.R.B. Rodrigues, L.G. Fietto, F.M.L. Passos, W.B. Silveira, Optimizing and validating the production of ethanol from cheese whey permeate by Kluyveromyces marxianus UFV-3, Biocatal. Agric. Biotechnol. 3 (2014) 111–117.
[105] D. Arapoglou, T. Varzakas, A. Vlyssides, C. Israilides, Ethanol production from potato peel waste (PPW), Waste Manag. 30 (2010) 1898–1902.
[106] B.J. Khawla, M. Sameh, G. Imen, F. Donyes, G. Dhouha, E.G. Raoudha, N.E. Oumèma, Potato peel as feedstock for bioethanol production: A comparison of acidic and enzymatic hydrolysis, Ind. Crops Prod. 52 (2014) 144–149.
[107] M. Boluda-Aguilar, L. García-Vidal, F. d P. González-Castañeda, A. López-Gómez, Mandarin peel wastes pretreatment with steam explosion for bioethanol production, Bioresour. Technol. 101 (2010) 3506–3513.
[108] H.S. Oberoi, P. V. Vadlani, L. Saida, S. Bansal, J.D. Hughes, Ethanol production from banana peels using statistically optimized simultaneous saccharification and fermentation process, Waste Manag. 31 (2011) 1576–1584.
[109] J.H. Kim, J.C. Lee, D. Pak, Feasibility of producing ethanol from food waste, Waste Manag. 31 (2011) 2121–2125.
[110] M.H. Nguyen, Alternatives to spray irrigation of starch waste based distillery effluent, J. Food Eng. 60 (2003) 367–374.
[111] C. Xue, X.Q. Zhao, C.G. Liu, L.J. Chen, F.W. Bai, Prospective and development of butanol as an advanced biofuel, Biotechnol. Adv. 31 (2013) 1575–1584.
[112] P. Dürre, Biobutanol: An attractive biofuel, Biotechnol. J. 2 (2007) 1525–1534.
[113] M. Becerra, M.E. Cerdán, M.I. González-Siso, Biobutanol from cheese whey, Microb. Cell Fact. 14 (2015) 1-14.
[114] T. Lütke-Eversloh, H. Bahl, Metabolic engineering of Clostridium acetobutylicum: Recent advances to improve butanol production, Curr. Opin. Biotechnol. 22 (2011) 634–647.
[115] M. Stoeberl, R. Werkmeister, M. Faulstich, W. Russ, Biobutanol from food wastes–fermentative production, use as biofuel an the influence on the emissions, Procedia Food Sci. 1 (2011) 1867–1874.
[116] V. Ujor, A.K. Bharathidasan, K. Cornish, T.C. Ezeji, Feasibility of producing butanol from industrial starchy food wastes, Appl. Energy. 136 (2014) 590–598.
[117] H. Huang, V. Singh, N. Qureshi, Butanol production from food waste: a novel process for producing sustainable energy and reducing environmental pollution, Biotechnol. Biofuels. 8 (2015) 1–12.
[118] N. Nishio, Y. Nakashimada, Recent development of anaerobic digestion processes for energy recovery from wastes, J. Biosci. Bioeng. 103 (2007) 105–112.
[119] C. Mao, Y. Feng, X. Wang, G. Ren, Review on research achievements of biogas from anaerobic digestion, Renew. Sustain. Energy Rev. 45 (2015) 540–555.
[120] M. Schlegel, N. Kanswohl, D. Rössel, A. Sakalauskas, Essential technical parameters for effective biogas production, Agron. Res. 6 (2008) 341–348.
[121] A. Singh, A. Kuila, S. Adak, M. Bishai, R. Banerjee, Utilization of Vegetable Wastes for Bioenergy Generation, Agric. Res. 1 (2012) 213–222.
[122] J. Gomesantunes, R. Mikalsen, A. Roskilly, An investigation of hydrogen-fuelled HCCI engine performance and operation, Int. J. Hydrogen Energy. 33 (2008) 5823–5828.
[123] X. Gómez, C. Fernández, J. Fierro, M.E. Sánchez, A. Escapa, A. Morán, Hydrogen production: Two stage processes for waste degradation, Bioresour. Technol. 102 (2011) 8621–8627.
[124] K.Y. Show, D.J. Lee, J.S. Chang, Bioreactor and process design for biohydrogen production, Bioresour. Technol. 102 (2011) 8524–8533.
[125] M.Y. Azwar, M.A. Hussain, A.K. Abdul-Wahab, Development of biohydrogen production by photobiological, fermentation and electrochemical processes: A review, Renew. Sustain. Energy Rev. 31 (2014) 158–173.
[126] A. Ghimire, L. Frunzo, F. Pirozzi, E. Trably, R. Escudie, P.N.L. Lens, G. Esposito, A review on dark fermentative biohydrogen production from organic biomass: Process parameters and use of by-products, Appl. Energy. 144 (2015) 73–95.
[127] G. Cai, B. Jin, P. Monis, C. Saint, Metabolic flux network and analysis of fermentative hydrogen production, Biotechnol. Adv. 29 (2011) 375–387.
[128] L. Alibardi, R. Cossu, Effects of carbohydrate, protein and lipid content of organic waste on hydrogen production and fermentation products, Waste Manag. 47 (2016) 69–77.
[129] L. Dong, Y. Zhenhong, S. Yongming, K. Xiaoying, Z. Yu, Hydrogen production characteristics of the organic fraction of municipal solid wastes by anaerobic mixed culture fermentation, Int. J. Hydrogen Energy. 34 (2009) 812–820.
[130] B.E. Logan, S.E. Oh, I.S. Kim, S. Van Ginkel, Biological hydrogen production measured in batch anaerobic respirometers, Environ. Sci. Technol. 36 (2002) 2530–2535.
[131] G. De Gioannis, M. Friargiu, E. Massi, A. Muntoni, A. Polettini, R. Pomi, D. Spiga, Biohydrogen production from dark fermentation of cheese whey: Influence of pH, Int. J. Hydrogen Energy. 39 (2014) 1–12.
[132] M. Stoytcheva, G. Montero, Biodiesel- Feedstocks and processing technologies, first ed., InTech, Croatia, 2011.
[133] M. Canakci, The potential of restaurant waste lipids as biodiesel feedstocks, Bioresour. Technol. 98 (2007) 183–190.
[134] A.H. Mouneimne, H. Carrère, N. Bernet, J.P. Delgenès, Effect of saponification on the anaerobic digestion of solid fatty residues, Bioresour. Technol. 90 (2003) 89–94.
[135] L. Brennan, P. Owende, Biofuels from microalgae-A review of technologies for production, processing, and extractions of biofuels and co-products, Renew. Sustain. Energy Rev. 14 (2010) 557–577.
[136] M. Mathiyazhagan, a Ganapathi, Factors Affecting Biodiesel Production, Res. Plant Biol. 1 (2011) 1–5.
[137] A. Demirbas, Progress and recent trends in biodiesel fuels, Energy Convers. Manag. 50 (2009) 14–34.
[138] A. Demirbas, Production of biodiesel fuels from linseed oil using methanol and ethanol in non-catalytic SCF conditions, Biomass and Bioenergy. 33 (2009) 113–118.
[139] I.A. Musa, The effects of alcohol to oil molar ratios and the type of alcohol on biodiesel production using transesterification process, Egypt. J. Pet. 25 (2016) 21–31.
[140] D.Y.C. Leung, Y. Guo, Transesterification of neat and used frying oil: Optimization for biodiesel production, Fuel Process. Technol. 87 (2006) 883–890.
[141] A.B.M.S. Hossain, A.N. Boyce, Biodiesel production from waste sunflower cooking oil as an environmental recycling process and renewable energy, Bulg. J. Agric. Sci. 15 (2009) 312–317.
[142] U. Rashid, F. Anwar, Production of biodiesel through optimized alkaline-catalyzed transesterification of rapeseed oil, Fuel. 87 (2008) 265–273.
[143] M. Agarwal, K. Singh, S. Upadhyaya, S.P. Chaurasia, Effect of Reaction Parameters on Yield and Characteristics of Biodiesel Obtained from Various Vegetable Oils, Www.Conference.Net.Au/Chemeca. (2011) 11.
[144] A. Gashaw, A. Teshita, Production of biodiesel from waste cooking oil and factors affecting its formation: A review, Int. J. Renew. Sustain. Energy. 3 (2014) 92–98.
[145] T. Eevera, K. Rajendran, S. Saradha, Biodiesel production process optimization and characterization to assess the suitability of the product for varied environmental conditions, Renew. Energy. 34 (2009) 762–765.
[146] E.C. Abbah, G.I. Nwandikom, C.C. Egwuonwu, N.R. Nwakuba, Effect of reaction temperature on the yield of biodiesel from neem seed oil, Am. J. Energy Sci. 3 (2016) 16–20.
[147] P. Felizardo, M.J. Neiva Correia, I. Raposo, J.F. Mendes, R. Berkemeier, J.M. Bordado, Production of biodiesel from waste frying oils, Waste Manag. 26 (2006) 487–494.
[148] L. Naik, N. Radhika, K. Sravani, A. Hareesha, B. Mohanakumari, K. Bhavanasindhu, Optimized parameters for production of biodiesel from fried oil optimized parameters for production of biodiesel from fried oil, Int. Adv. Res. J. Sci. Eng. Technol. 2 (2015) 62–65.
[149] F. Fahed Banihani, Transesterification and production of biodiesel from waste cooking oil: effect of operation variables on fuel properties, Am. J. Chem. Eng. 4 (2016) 154-160.
[150] A.B.M.S. Hossain, M.A. Mazen, Effects of catalyst types and concentrations on biodiesel production from waste soybean oil biomass as renewable energy and environmental recycling process, Aust. J. Crop Sci. 4 (2010) 550–555.
[151] S.S. Jagadale, L.M. Jugulkar, Review of various reaction parameters and other factors affecting on production of chicken fat based biodiesel, Int. J. Mod. Eng. Res. 2 (2012) 407–411.
[152] M.P. Dorado, E. Ballesteros, M. Mittelbach, F.J. López, Kinetic parameters affecting the alkali-catalyzed transesterification process of used olive oil, Energy and Fuels. 18 (2004) 1457–1462.
[153] N.H.M. Yasin, T. Mumtaz, M.A. Hassan, N. Abd Rahman, Food waste and food processing waste for biohydrogen production: A review, J. Environ. Manage. 130 (2013) 375–385.
[154] J.J. Lay, K.S. Fan, J. Chang I, C.H. Ku, Influence of chemical nature of organic wastes on their conversion to hydrogen by heat-shock digested sludge, Int. J. Hydrogen Energy. 28 (2003) 1361–1367.
[155] D.Y. Lee, Y. Ebie, K.Q. Xu, Y.Y. Li, Y. Inamori, Continuous H2 and CH4 production from high-solid food waste in the two-stage thermophilic fermentation process with the recirculation of digester sludge, Bioresour. Technol. 101 (2010) S42–S47.
[156] X. Wang, G. Yang, Y. Feng, G. Ren, X. Han, Optimizing feeding composition and carbon-nitrogen ratios for improved methane yield during anaerobic co-digestion of dairy, chicken manure and wheat straw, Bioresour. Technol. 120 (2012) 78–83.
[157] N.H. Mohd Yasin, N.A. Rahman, H.C. Man, M.Z. Mohd Yusoff, M.A. Hassan, Microbial characterization of hydrogen-producing bacteria in fermented food waste at different pH values, Int. J. Hydrogen Energy. 36 (2011) 9571–9580.
[158] S.Y. Adaganti, V.S. Yaliwal, B.M. Kulkarni, G.P. Desai, N.R. Banapurmath, Factors affecting bioethanol production from lignocellulosic biomass (Calliandra calothyrsus), Waste and Biomass Valorization. 5 (2014) 963–971.
[159] Y. Lin, W. Zhang, C. Li, K. Sakakibara, S. Tanaka, H. Kong, Factors affecting ethanol fermentation using Saccharomyces cerevisiae BY4742, Biomass and Bioenergy. 47 (2014) 395–401.
[160] M. Fakruddin, M.A. Quayum, M.M. Ahmad, N. Choudhury, Analysis of key factors affecting ethanol production by Saccharomyces cerevisiae IFST-072011, Biotechnology. 11 (2012) 248–252.
[161] M. Kashid, A. Ghosalkar, Critical factors affecting ethanol production by immobilized Pichia stipitis using corn cob hemicellulosic hydrolysate, Prep. Biochem. Biotechnol. 48 (2018) 288–295.
[162] V.S. O’Leary, R. Green, B.C. Sullivan, V.H. Holsinger, Alcohol production by selected yeast strains in lactase‐hydrolyzed acid whey, Biotechnol. Bioeng. 19 (1977) 1019–1035.
[163] R. Thammasittirong, A. Thirasaktana, T Thammasittirong, M. Srisodsuk, Improvement of ethanol production by ethanol-tolerant Saccharomyces cerevisiae UVNR56., Springerplus. 2 (2013) 583-588.
[164] L.P. Yomano, S.W. York, L.O. Ingram, Isolation and characterization of ethanol-tolerant mutants of Escherichia coli KO11 for fuel ethanol production, J. Ind. Microbiol. Biotechnol. 20 (1998) 132–138.
[165] J.O. Westman, C.J. Franzén, Current progress in high cell density yeast bioprocesses for bioethanol production, Biotechnol. J. 10 (2015) 1185–1195.
[166] Y.Q. Tang, M.Z. An, Y.L. Zhong, M. Shigeru, X.L. Wu, K. Kida, Continuous ethanol fermentation from non-sulfuric acid-washed molasses using traditional stirred tank reactors and the flocculating yeast strain KF-7, J. Biosci. Bioeng. 109 (2010) 41–46.
[167] K. Hegde, N. Chandra, S.J. Sarma, S.K. Brar, V.D. Veeranki, Genetic Engineering strategies for enhanced biodiesel production, Mol. Biotechnol. 57 (2015) 606–624.
[168] A. Cernac, C. Benning, WRINKLED1 encodes an AP2/EREB domain protein involved in the control of storage compound biosynthesis in Arabidopsis, Plant J. 40 (2004) 575–585.
[169] L. Domingues, P.M.R. Guimarães, C. Oliveira, Metabolic engineering of Saccharomyces cerevisiae for lactose / whey fermentation, Bioeng. Bugs. 1 (2010) 1–8.
[170] C.Y. Chen, M.H. Yang, K.L. Yeh, C.H. Liu, J.S. Chang, Biohydrogen production using sequential two-stage dark and photo fermentation processes, Int. J. Hydrogen Energy. 33 (2008) 4755–4762.
[171] W. Han, Y. Yan, Y. Shi, J. Gu, J. Tang, H. Zhao, Biohydrogen production from enzymatic hydrolysis of food waste in batch and continuous systems, Sci. Rep. 6 (2016) 1–9.
[172] D.E. Algapani, W. Qiao, M. Ricci, D. Bianchi, S. M. Wandera, F. Adani, R. Dong, Bio-hydrogen and bio-methane production from food waste in a two-stage anaerobic digestion process with digestate recirculation, Renew. Energy. 130 (2018) 1108–1115.