Microalgae–Microbial Fuel Cell


Microalgae–Microbial Fuel Cell

Sabeela Beevi Ummalyma, Dinabandhu Sahoo, Ashok Pandey, Kooloth Valapil Prajeesh

Pollution of the environment associated with increased population along with energy consumption and the projected reduction of fossil fuels highlights the necessities for sustainable, cost-effective eco-friendly bio-energy sources. The latest research on microalgae revealed that algal biomass has promising technologies for biofuel production, high-value product development, carbon sequestration and wastewater treatment. However, the latest application of microalgal biomass is its use as microbial fuel cells (MFCs). Microalgae-based microbial fuel cells (mMFCs) are used as a device that can convert energy from sunlight into electrical energy through biological pathways. This chapter is aimed to highlight the advantages of microalgae for power generation in MFCs, factors influencing electricity production from algae, and future perspectives of mMFCs.

Microalgae, Microbial Fuel Cells, Bioenergy, Algal Biomass

Published online 2/21/2019, 20 pages

Citation: Sabeela Beevi Ummalyma, Dinabandhu Sahoo, Ashok Pandey, Kooloth Valapil Prajeesh, Microalgae–Microbial Fuel Cell, Materials Research Foundations, Vol. 46, pp 1-20, 2019

DOI: http://dx.doi.org/10.21741/9781644900116-1

Part of the book on Microbial Fuel Cells

[1] M.J. Salar-Garcia, I. Gajda, V.M. Ortiz-Martinez, J. Greenman, M.M. Hanczyc, A.P. delos Rios, I.A. Leropoulos, Microalgae as substrate in a low cost terracotta-based microbial fuel cells, Bioresour. Technol. 209 (2010) 380-385. https://doi.org/10.1016/j.biortech.2016.02.083
[2] S.B. Ummalyma, E. Gnansounou, R.K. Sukumaran, R. Sindhu, A. Pandey, D. Sahoo, Bioflocculation: An alternative strategy for harvesting of microalgae-An Overview, Bioresour. Technol. 242 (2017) 227-235. https://doi.org/10.1016/j.biortech.2017.02.097
[3] S.B. Ummalyma, R.K. Sukumaran, Cultivation of the fresh water microalga Chlorococcum sp. RAP13 in sea water for producing oil suitable for biodiesel, J. Appl. Phycol. 27 (2015) 141–147. https://doi.org/10.1007/s10811-014-0340-4
[4] S.B Ummalyma, R.K Sukumaran, Cultivation of microalgae in dairy effluent for oil production and removal of organic pollution load, Bioresour. Technol. 165 (2014) 295-301. https://doi.org/10.1016/j.biortech.2014.03.028
[5] A. Bahadar, M.B. Khan, Progress in energy from microalgae: A review, Renew. Sust. Energ. Rev. 27 (2013) 128-148. https://doi.org/10.1016/j.rser.2013.06.029
[6] C.Y Chen, K.L. Yeh, R. Aisyah, D.J. Lee, J.S. Chang, Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review, Bioresour. Technol. 102 (2011) 71-81. https://doi.org/10.1016/j.biortech.2010.06.159
[7] J.H. Lin, D.J, Lee, J. S. Chang, Lin, Lutein in specific marigold flowers and microalgae, J. Taiwan Inst. Chem. Eng. 49 (2015) 90–94. https://doi.org/10.1016/j.jtice.2014.11.031
[8] K.Y. Show, D.J. Lee, J.S.C. Show, Algal biomass dehydration, Bioresour. Technol. 135 (2013) 720–729. https://doi.org/10.1016/j.biortech.2012.08.021
[9] Z. Yang, H. Pie, Q. Hou, L. Jiang, L. Zhang, C. Nie, Algal biofilm assisted microbial fuel cells to enhance domestic waste water treatment: nutrients, organics removal and bioenergy production, Chem. Eng. J. 332 (2018) 277-285. https://doi.org/10.1016/j.cej.2017.09.096
[10] A. Khandelwal, A. Vijay, A. Dixit, M. Chhabra, Microbial fuel cell powered by lipid extracted algae: a promising system for algal lipid and power generation, Bioresour. Technol. 247 (2018) 520-527. https://doi.org/10.1016/j.biortech.2017.09.119
[11] L. He, P. Du, Y. Chen, H. Lu, X. Cheng, B. Cheng, Z. Wang, Advances in microbial fuel cells for waste water treatment, Renew. Sust. Energ. Rev. 71 (2017) 388-403. https://doi.org/10.1016/j.rser.2016.12.069
[12] Y. Dong, Y. Qu, C. Li, X. Han, J.J. Ambuchi, J. Liu, Y. Yu, Y. Feng, Simultaneous algae polluted water treatment and electricity generation using a biocathode coupled eletrocoagulation cell (bio-ECC), J. Hazard. Mater. 340 (2017) 104-112. https://doi.org/10.1016/j.jhazmat.2017.06.055
[13] A.S. Commault, O. Laczka, N. Siboni, B.Tamburic, J.R. Crosswe, J.R Seymour, P.J Ralph, Electricity and biomass production in a bacteria- Chlorella based microbial fuel cell treating waste water, J. Power. Sources 356 (2017) 299-309. https://doi.org/10.1016/j.jpowsour.2017.03.097
[14] X.A. Walter, J. Greenman, B. Taylor, I.A. Ieropoulos, Microbial fuel cells continuously fuelled by untreated fresh algal biomass, Algal Res. 11 (2015)103–107. https://doi.org/10.1016/j.algal.2015.06.003
[15] Z. Baicha, M.J Salar-García, V.M. Ortiz-Martínez, F.J. Hernández-Fernández, A.P. de los Ríos, N. Labjar, E. Lotfi, M. Elmahi, A critical review on microalgae as an alternative source for bioenergy production: a promising low cost substrate for microbial fuel cells, Fuel Process. Technol. 154 (2016)104–116. https://doi.org/10.1016/j.fuproc.2016.08.017
[16] X. Hu, B. Liu, J. Zhou, R. Jin, S. Qiao, G. Liu, CO2 fixation, lipid production, and power generation by a novel air-lift-type microbial carbon capture cell system, Environ. Sci. Technol. 49 (2015) 10710–10717. https://doi.org/10.1021/acs.est.5b02211
[17] M. Zhou, T. Jin, Z. Wu, M. Chi, T. Gu, Microbial fuel cells for bioenergy and bioproducts, Bioenergy Bioprod. Part Ser. Green Energy Technol. 88 (2011) 131–171.
[18] Z. Ghassemi, G. Slaughter, Biological fuel cells and membranes, Membranes 7 (2017) 3. https://doi.org/10.3390/membranes7010003
[19] J. Li, L.G. Liu,R.D. Zhang, Y. Luo , C.P. Zhang, M.C. Li, Electricity generation by two types of microbial fuel cells using nitrobenzene as the anodic or cathodic reactant, Bioresour. Technol. 101 (2010) 4013–4020. https://doi.org/10.1016/j.biortech.2009.12.135
[20] V.F. Passos, V. Fabiano, S. Aquino Neto, A.R. Andrade, V. Reginatto, Energy generation in a microbial fuel cell using anaerobic sludge from a wastewater treatment plant, Sci. Agric. 73 (2016) 424–428. https://doi.org/10.1590/0103-9016-2015-0194
[21] J.R. Kim, S.H. Jung, J.M. Regan, B.E. Logan, Electricity generation and microbial community analysis of alcohol powered microbial fuel cells, Bioresour. Technol. 98 (2007) 2568–2577. https://doi.org/10.1016/j.biortech.2006.09.036
[22] H. Luo, G. Liu, R. Zhang, S. Jin, Phenol degradation in microbial fuel cells. Chem. Eng. J. 147 (2009) 259–264. https://doi.org/10.1016/j.cej.2008.07.011
[23] J. Li, L.G. Liu, R.D. Zhang, Y. Luo, C.P. Zhang, M.C. Li, Power generation from glucose and nitrobenzene degradation using the microbial fuel cell, Environ. Sci. 31 (2010) 2811–2817.
[24] V.G. Gude, Wastewater treatment in microbial fuel cells – an overview, J. Clean. Prod. 122 (2016) 287–307. https://doi.org/10.1016/j.jclepro.2016.02.022
[25] J. Khera, A. Chandra, Microbial fuel cells: recent trends, Proc. Natl. Acad. Sci. India. Sect A: Phys. Sci. 82 (2012) 31–41. https://doi.org/10.1007/s40010-012-0003-2
[26] D.F. Juang, P.C. Yang, H.Y. Chou, L.J. Chiu, Effects of microbial species, organic loading and substrate degradation rate on the power generation capability of microbial fuel cells, Biotechnol. Lett. 33 (2011) 2147–2160. https://doi.org/10.1007/s10529-011-0690-9
[27] S. Mahesh, D. Tadesse, A. Melkamu, Evaluation of photosynthetic microbial fuel cell for bioelectricity production, Indian J. Energy 2 (2013) 116–120.
[28] Y. Chisti, Biodiesel from microalgae beats bioethanol. Trends Biotechnol. 26 (2008) 126-131. https://doi.org/10.1016/j.tibtech.2007.12.002
[29] E. Bazdara, R. Roshandela, S. Yaghmaeib, M.M. Mardanpour, The effect of different light intensities and light/dark regimes on the performance of photosynthetic microalgae microbial fuel cell, Bioresour. Technol. 261 (2018) 350–360. https://doi.org/10.1016/j.biortech.2018.04.026
[30] D.P.B.T.B. Strik, H. Terlouw, H.V.M. Hamelers, C.J.N. Buisman, Renewable sustainable biocatalyzed electricity production in a photosynthetic algal microbial fuel cell (PAMFC), Appl. Microbiol. Biotechnol. 81 (2008) 659–668. https://doi.org/10.1007/s00253-008-1679-8
[31] D.F. Juang, C.H. Lee, S.C. Hsuc, Comparison of electrogenic capabilities of microbial fuel cell with different light power on algae grown cathode, Bioresour. Technol. 123 (2012) 23–29. https://doi.org/10.1016/j.biortech.2012.07.041
[32] G.P.M.K. Ciniciato, F.L. Ng, S.M. Phang, M. Jaafar, A.C. Fisher, K. Yunus, Investigating the association between photosynthetic efficiency and generation of biophotoelectricity in autotrophic microbial fuel cells, Sci. Rep. 6 (2016) 31193. https://doi.org/10.1038/srep31193
[33] S. Kondaveeti, K.S. Choi, R. Kakarla, B. Min, Microalgae Scenedesmus obliquus as renewable biomass feedstock for electricity generation inmicrobial fuel cells (MFCs), Front. Environ. Sci. Eng. 8 (2014) 784–791. https://doi.org/10.1007/s11783-013-0590-4
[34] A.M. Lakaniemi, O.H. Tuovinen, J.A. Puhakka, Anaerobic conversion of microalgal biomass to sustainable energy carriers-a review, Bioresour. Technol. 135 (2013) 222–231. https://doi.org/10.1016/j.biortech.2012.08.096
[35] C.C. Fu, T.C. Hung, W.T. Wu, T.C. Wen, C.H. Su, Current and voltage responses in instant photosynthetic microbial cells with Spirulina platensis, Biochem. Eng. J. 52 (2010) 175–180. https://doi.org/10.1016/j.bej.2010.08.004
[36] N. Rashid, Y.F. Cui, M. Saif Ur Rehman, J.I. Han, Enhanced electricity generation by using algae biomass and activated sludge in microbial fuel cell, Sci. Total Environ. 456 (2013) 91–104. https://doi.org/10.1016/j.scitotenv.2013.03.067
[37] S. Mateo, A. Gonzalez del Campo, P. Ca-izares, J. Lobato, M.A. Rodrigo, F.J. Fernandez, Bioelectricity generation in a self-sustainable microbial solar cell, Bioresour. Technol. 159 (2014) 451–454. https://doi.org/10.1016/j.biortech.2014.03.059
[38] G.R. Ramanathan, S. Birthous, D. Abirami, Efficacy of marine microalgae as exoelectroge in microbial fuel cell system for bio-electricity generation, J. Fish Mar. Sci. 3 (2011) 79–87.\
[39] C. Xu, K. Poon, M.M. Choi, R. Wang, Using live algae at the anode of a microbial fuel cell to generate electricity, Environ. Sci. Pollut. Res. Int. 22 (2015) 15621–15635 . https://doi.org/10.1007/s11356-015-4744-8
[40] V.G. Gude,B. Kokabian, V. Gadhamshetty, Beneficial bioelectrochemical systems for energy, water, and biomass production. J. Microb. Biochem. Technol. 6 (2013) 2-14.
[41] M. Shukla, S. Kumar, Algal growth in photosynthetic algal microbial fuel cell and its subsequent utilization for biofuels, Renew. Sust. Energ. Rev. 82 (2018) 402–414. https://doi.org/10.1016/j.rser.2017.09.067
[42] L. Huang, J.M. Regan, X. Quan, Electron transfer mechanisms, new applications, andperformance of biocathode microbial fuel cells, Bioresour. Technol. 102 (2011) 316–323. https://doi.org/10.1016/j.biortech.2010.06.096
[43] V. Sharma, P.P. Kundu, Biocatalysts in microbial fuel cells, Enzym. Microb. Technol. 47 (2010) 179–188. https://doi.org/10.1016/j.enzmictec.2010.07.001
[44] L. Xiao, E.B. Young, J.A. Berges, Z. He, Integrated photo-bioelectochemical system for contaminants removal and bioenergy production, Environ. Sci. Technol. 46 (2012) 11459–114566. https://doi.org/10.1021/es303144n
[45] Y. Zhang, J.S. Noori, I. Angelidaki, Simultaneous organic carbon, nutrients removal and energy production in a photomicobial fuel cell (PFC), Energy Environ. Sci. 4 (2011) 4340–4346. https://doi.org/10.1039/c1ee02089g
[46] S. Puig, M. Serra, M. Coma, Cabré, M.D. Balaguer, J. Colprim, Effect of pH on nutrient dynamics and electricity production using microbial fuel cells, Bioresour. Technol. 101 (2010) 9594–9599. https://doi.org/10.1016/j.biortech.2010.07.082
[47] E.R. Zhang, L. Liu, Y.Y. Cui, Effect of PH on the performance of the anode in microbial fuel cells, Adv. Mat. Res. 608–609 (2013) 884–888.
[48] R.A. Rozendal, H.V.M. Hamelers, C.J.N. Buisman, Effects of membrane cation transporton pH and microbial fuel cell performance, Environ. Sci. Technol. 40 (2006) 5206–5211. https://doi.org/10.1021/es060387r
[49] C.L Torres, H.S. Lee, B.E. Rittmann, Carbonate species as OH carriers for decreasing the pH gradient between cathode and anode in biological fuel cells, Environ. Sci. Technol. 42 (2006) 8773–8777. https://doi.org/10.1021/es8019353
[50] V.B. Oliveira, M. Simões, L.F. Melo, A.M.F.R. Pinto, Overview on the developments of microbial fuel cells, Biochem. Eng. J. 73 (2013) 53–64. https://doi.org/10.1016/j.bej.2013.01.012
[51] L. Qiang, L.J. Yuan, Q. Ding, Influence of buffer solutions on the performance of microbial fuel cell electricity generation, Environ. Sci. 32 (2011) 1524–1528.
[52] Y. Fan, H. Hu, H. Liu, Sustainable power generation in microbial fuel cells using bicarbonate buffer and proton transfer mechanisms, Environ. Sci. Technol. 41 (2007) 8154–8158. https://doi.org/10.1021/es071739c
[53] J.Y. Nam, H.W. Kim, K.H. Lim, H.S. Shin, Effects of organic rates on the continuous electricity generation from fermented wastewater using a single-chamber microbial fuel cell, Bioresour. Technol. 101 (2010) 533–537. https://doi.org/10.1016/j.biortech.2009.03.062
[54] A.K. Marcus, C.I. Torres, B.E. Rittmann, Analysis of a microbial electrochemical cell using the proton condition in biofilm (PCBIOFILM) model, Bioresour. Technol. 102 (2011) 253-262. https://doi.org/10.1016/j.biortech.2010.03.100
[55] R. Karthikeyan, A. Selvam, K.Y. Cheng, J.W. Wong, Influence of ionic conductivity in bioelectricity production from saline domestic sewage sludge in microbial fuel cells, Bioresour. Technol. 200 (2016) 845–852. https://doi.org/10.1016/j.biortech.2015.10.101
[56] Y.L. Tang, Y.T. He, P.F. Yu, H. Sun, J.X. Fu, Effect of temperature on electricity generation of single-chamber microbial fuel cells with proton exchange membrane, Adv. Mat. Res. 393–395 (2012) 1169–1172.
[57] M. Pérez-Page, V. Pérez-Herranz, Effect of the operation and humidification temperatures on the performance of a PEM fuel cell stack on dead-end mode, Int. J. Electrochem. Sci. 6 (2011) 492–505.
[58] Y. Zhang, J. Sun, Y. Hu, Z. Wang, S. Li, Effects of periodically alternating temperatures on performance of single-chamber microbial fuel cells, Int. J. Hydrog. Energy 39 (2014) 8048–8054. https://doi.org/10.1016/j.ijhydene.2014.03.110
[59] D.R. Ort, X. Zhu, A. Melis, Optimizing antenna size to maximize photosynthetic efficiency, Plant Physiol. 155 (2011) 79–85. https://doi.org/10.1104/pp.110.165886
[60] A. Melis, Solar energy conversion efficiencies in photosynthesis: minimizing the chlorophyll antennae to maximize efficiency, Plant Sci. 177 (2009) 272–280. https://doi.org/10.1016/j.plantsci.2009.06.005
[61] K.M. Weyer, D.R. Bush, A. Darzins, B.D. Willson, Theoretical maximum algal oil production, Bioenergy Res. 3 (2010) 204–213. https://doi.org/10.1007/s12155-009-9046-x
[62] L. Rodolfi, G.C. Zittelli, N. Bassi, G. Padovani, N. Biondi, G. Bonini, Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor, Biotechnol. Bioeng. 102 (2009) 100–112. https://doi.org/10.1002/bit.22033
[63] A.M. Illman, A.H. Scragg, S.W. Shales, Increase in Chlorella strains calorific values when grown in low nitrogen medium, Enzym. Microb. Technol. 27 (2000) 631–635. https://doi.org/10.1016/S0141-0229(00)00266-0
[64] J.E. WPolle, J.R. Benemann, A. Tanaka, A. Melis, Photosynthetic apparatus organization and function in the wild type and a chlorophyll b-less mutant of Chlamydomonas reinhardtii, dependence on carbon source, Planta 211 (2000) 335–344. https://doi.org/10.1007/s004250000279
[65] J.E.W. Polle, S. Kanakagiri, E. Jin, T. Masuda, A. Melis, Truncated chlorophyll antenna size of the photosystems — a practical method to improve microalgal productivity and hydrogen production in mass culture, Int. J. Hydrog. Energ. 27 (2002) 1257–1264. https://doi.org/10.1016/S0360-3199(02)00116-7
[66] S. Cazzaniga, L. Dall Osto, J. Szaub, L. Scibilia, M. Ballottari, S. Purton, Domestication of the green alga Chlorella sorokiniana: reduction of antenna size improves light-use efficiency in a photobioreactor, Biotechnol. Biofuels. 7 (2014) 157. https://doi.org/10.1186/s13068-014-0157-z
[67] Z. Perrine, S. Negi, R.T. Sayre, Optimization of photosynthetic light energy utilization by microalgae, Algal Res. 1 (2012) 134–142. https://doi.org/10.1016/j.algal.2012.07.002
[68] P.G. Stephenson, C.M. Moore, M.J. Terry, M.V. Zubkov, T.S. Bibby, Improving photosynthesis for algal biofuels: toward a green revolution, Trends Biotechnol. 29 (2011) 615–623. https://doi.org/10.1016/j.tibtech.2011.06.005
[69] C. Formighieri, F. Franck, R. Bassi. Regulation of the pigment optical density of an algal cell: filling the gap between photosynthetic productivity in the laboratory and in mass culture, J Biotechnol. 162 (2012) 115–123. https://doi.org/10.1016/j.jbiotec.2012.02.021
[70] L. Girolomoni, P. Ferrante, S. Berteotti, G. Giuliano, R. Bassi, M. Ballottari, The function of LHCBM4/6/8 antenna proteins in Chlamydomonas reinhardtii, J. Exp. Bot. 68 (2017) 627–641.
[71] T. de Mooij, M. Janssen, O. Cerezo-Chinarro, J.H. Mussgnug, O. Kruse, M. Ballottari, Antenna size reduction as a strategy to increase biomass productivity: a great potential not yet realized, J. Appl. Phycol. 27 (2015)1063–1077. https://doi.org/10.1007/s10811-014-0427-y
[72] A. Magnuson, S. Styring, Molecular chemistry for solar fuels: from natural to artificial hotosynthesis, Aust. J. Chem. 65 (2012) 564–572. https://doi.org/10.1071/CH12114
[73] K. Watanabe, K. Nishio, Electric power from rice paddy fields. In: Nathwani J, Ng A, (Eds), Paths to sustainable energy. Rijeka: In Tech, 2010, pp. 563–80. https://doi.org/10.5772/12929
[74] K. Nishio, K. Hashimoto, K. Watanabe, Digestion of algal biomass for electricity generation in microbial fuel cells, Biosci. Biotechnol. Biochem. 77 (2013) 670–672. https://doi.org/10.1271/bbb.120833
[75] K. Nishio, K. Hashimoto, K. Watanabe, Light/electricity conversion by defined cocultures of Clamydomonas and Geobacter, J. Biosci. Bioeng. 115 (2013) 412–417. https://doi.org/10.1016/j.jbiosc.2012.10.015
[76] T. Yagishita, S. Sawayama, K. Tsukahara, T. Ogi, Effects of intensity of incident light and concentrations of Synechococcus sp. and 2-hydroxy-1,4-naphthoquinone on the current output of photosynthetic electrochemical cell, Sol. Energy. 61 (1997) 347–353. https://doi.org/10.1016/S0038-092X(97)00069-8
[77] H. Hoppe, N.S. Sariciftci, Organic solar cells: an overview, J. Mater. Res. 19 (2004) 1924–1945. https://doi.org/10.1557/JMR.2004.0252
[78] Y.C. Wu, Z.J. Wang, Y. Zheng, Y. Xiao, Z.H. Yang, F. Zhao, Light intensity affects the performance of photo microbial fuel cells with Desmodesmus sp. A8 as cathodic microorganism, Appl. Energy. 116 (2014) 86–90. https://doi.org/10.1016/j.apenergy.2013.11.066
[79] A. González del Campo, J.F. Perez, P. Ca-izares, M.A. Rodrigo, F.J. Fernández, J. Lobato, Study of a photosynthetic MFC for energy recovery from synthetic industrial fruit juice wastewater, Int. J. Hydrog. Energy. 39 (2014) 21828–21836. https://doi.org/10.1016/j.ijhydene.2014.07.055
[80] B. Min, B.E. Logan, Continuous electricity generation from domestic waste- water and organic substrates in a flat plate microbial fuel cell, Environ. Sci. Technol. 38 (2004) 5809–5814. https://doi.org/10.1021/es0491026
[81] B. Logan, S. Cheng, V. Watson, G. Estadt, Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells, Environ. Sci. Technol. 41 (2007) 3341–3346. https://doi.org/10.1021/es062644y
[82] Y. Sharma, B.K. Li, The variation of power generation with organic substrates in single-chamber microbial fuel cells (SCMFCs), Bioresour. Technol. 101 (2010) 1844-1850. https://doi.org/10.1016/j.biortech.2009.10.040
[83] S.V. Mohan, R. Sarvanan, S.V. Raghuvulu, G.M. Krishna, P.N. Sarma, Bioelectricity production from wastewater treatment in dual chambered microbial fuel cell (MFC) using selectively enriched mixed microflora: effect of catholyte, Bioresour. Technol. 99 (2008) 596–603. https://doi.org/10.1016/j.biortech.2006.12.026
[84] D. Pant, G. Van Bogaert, L. Diels, K. Vanbroekhoven, A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production, Bioresour. Technol. 101 (2010) 1533–1543. https://doi.org/10.1016/j.biortech.2009.10.017
[85] J. Y. Nam, H.W. Kim, K.H. Lim, H.S. Shin, B.E. Logan, Variation of power generation at different buffer types and conductivities in single chamber microbial fuel cells, Biosens. Bioelectron. 25 (2010) 1155–1159. https://doi.org/10.1016/j.bios.2009.10.005
[86] Z. Ghassemi, G. Slaughter, Biological fuel cells and membranes, Membranes. 7 (2017) 3. https://doi.org/10.3390/membranes7010003
[87] C. Sund, S. McMasters, S. Crittenden, L. Harrell, J. Sumner, Effect of electron mediators on current generation and fermentation in microbial fuel cell, Appl. Microbiol. Biotechnol. 76 (2007) 561–568. https://doi.org/10.1007/s00253-007-1038-1
[88] H. Ashoka, R. Shalini, P. Bhat, Comparative studies on electrodes for the construction of microbial fuel cells, Int. J. Adv. Biotechnol. Res. 3 (2012) 785–789.
[89] F. Harnisch, U. Schroder, Selectivity versus mobility: Separation of anode and cathode in microbial bioelectrochemical systems, Chem. Sus. Chem. 2 (2009) 921–926. https://doi.org/10.1002/cssc.200900111
[90] P.R. Motos, A. Heijne, R. Weijden, M. Shaakes, C.J.N. Buisman, H.J.A. Tom, High rate copper and energy recovery in microbial fuel cells, Front. Microbiol. 6 (2015) 527.
[91] M. Ghasemi, S. Shahgaldi, M. Ismail, Z. Yaakob ,W.R.W. Daud, New generation of carbon nanocomposite proton exchange membranes in microbial fuel cell systems, Chem. Eng. J. 184 (2012) 82–89. https://doi.org/10.1016/j.cej.2012.01.001
[92] A. Shahi, B.N. Rai, R.S. Singh, A comparative study of a biofuel cell with two different proton exchange membrane for the production of electricity from wastewater, Resour-Effic. Technol. 3 (2017) 78–81. https://doi.org/10.1016/j.reffit.2017.01.006
[93] A.T. Heijne, F. Liu, R.V Weijden, J. Weijma, C.J. Buisman, H.V Hamelers, Copper recovery combined with electricity production in a microbial fuel cell, Environ. Sci. Technol. 44 (2010) 4376–4381. https://doi.org/10.1021/es100526g
[94] K. Rabaey, G. Lissens, S.D. Siciliano, W. Verstraete, A microbial fuel cells capable of converting glucose to electricity at high rate and efficiency, Biotechnol. Lett. 25 (2003) 1531–1535. https://doi.org/10.1023/A:1025484009367
[95] J. Yan, J. Zhu, B.L. Chaloux, M.A. Hickner, Anion exchange membranes by bromination of tetramethylbiphenol-based poly(sulfone)s, Polym. Chem. 8 (2017) 2442–2449. https://doi.org/10.1039/C7PY00026J
[96] R.A. Rozendal, H.V.M. Hamelers, K. Rabaey, J. Keller, C.J.N. Buisman, Towards practical implementation of bioelectrochemical wastewater treatment, Trends Biotechnol. 26 (2008) 450–459. https://doi.org/10.1016/j.tibtech.2008.04.008
[97] M. Rahimnejad, G.D. Najafpour, A. Ghoreyshi, F. Talebnia, G. Premie, G.H. Bakeri, Thionine increases electricity generation from microbial fuel cells using, Saccharomyces cerevisiae and exoelectrogenic mixed culture, J. Microbiol. 50 (2012) 575–580. https://doi.org/10.1007/s12275-012-2135-0
[98] G.H. Flores, H.M.P. Varaldo, O.S. Feria, T.R. Castanon, E. Rios-Leal, J.G. Mayer, Batch operation of a microbial fuel cell equipped with alternative proton exchange membrane, Int. J. Hydrog. Energ. 40 (2016) 17323–17331. https://doi.org/10.1016/j.ijhydene.2015.06.057
[99] S. Peighambardoust, S. Rowshanzamir, M. Amjadi, Review of proron exchange membranes for fuel cell applications, Int. J. Hydrog. Energ. 35 (2010) 9349–9384. https://doi.org/10.1016/j.ijhydene.2010.05.017
[100] S.V. Mohan, G. Velvizhi, J.A. Modestra, S. Srikanth, Microbial fuel cell: Critial factors regulating biocatalysed electrochemical process and recent advancements, Renew. Sust. Energ. Rev. 40 (2014) 779–797. https://doi.org/10.1016/j.rser.2014.07.109