Methods of Enzyme Immobilization on Various Supports


Methods of Enzyme Immobilization on Various Supports

Amna Ahmad, Muhammad Rizwan Javed, Muhammad Ibrahim, Arfaa Sajid, Khadim Hussain, Muhammad Kaleem, Hafiza Mubasher Fatima, Habibullah Nadeem

Enzyme immobilization has become an essential process in the industry, medicine, and biotechnology over the last ten years. Scientists have developed many techniques which contain methods varying from physical adsorption and covalent attachment to entrapment in polymers and sol-gels. Immobilization of enzyme on cellulose nanofibers, nanoparticles and carbon nanotubes for fabrication of biofuel and biosensors and for the synthesis of biocatalysts are emerging as an innovative research area. This chapter will provide an overview of the recent development in enzyme immobilization techniques.

Adsorption, Covalent Bonding, Cross Linking, Entrapment

Published online 2/21/2019, 28 pages


Part of the book on Enzymatic Fuel Cells

[1] Y. Bai, H. Huang, K. Meng, P. Shi, P. Yang, H. Luo, C. Luo, Y. Feng, W. Zhang, B. Yao, Identification of an acidic α-amylase from Alicyclobacillus sp. A4 and assessment of its application in the starch industry, Food Chem. 131 (2012) 1473–1478.
[2] B. Ismail, S.S. Nielsen, Invited review: plasmin protease in milk: current knowledge and relevance to dairy industry, J. Dairy Sci. 93 (2010) 4999–5009.
[3] R. DiCosimo, J. McAuliffe, A.J. Poulose, G. Bohlmann, Industrial use of immobilized enzymes, Chem. Soc. Rev. 42 (2013) 6437–6474.
[4] C.R. Gomes-Ruffi, R.H. da Cunha, E.L. Almeida, Y.K. Chang, C.J. Steel, Effect of the emulsifier sodium stearoyl lactylate and of the enzyme maltogenic amylase on the quality of pan bread during storage, LWT-Food Sci. Technol. 49 (2012) 96–101.
[5] D. Jaros, H. Rohm, Enzymes Exogenous to Milk in Dairy Technology: Transglutaminase, (2015).
[6] J. Schückel, A. Matura, K.-H. Van Pee, One-copper laccase-related enzyme from Marasmius sp.: Purification, characterization and bleaching of textile dyes, Enzyme Microb. Technol. 48 (2011) 278–284.
[7] C.S. Rao, T. Sathish, P. Ravichandra, R.S. Prakasham, Characterization of thermo-and detergent stable serine protease from isolated Bacillus circulans and evaluation of eco-friendly applications, Process Biochem. 44 (2009) 262–268.
[8] T.K. Hakala, T. Liitiä, A. Suurnäkki, Enzyme-aided alkaline extraction of oligosaccharides and polymeric xylan from hardwood kraft pulp, Carbohydr. Polym. 93 (2013) 102–108.
[9] I.M. Apetrei, M.L. Rodriguez-Mendez, C. Apetrei, J.A. De Saja, Enzyme sensor based on carbon nanotubes/cobalt (II) phthalocyanine and tyrosinase used in pharmaceutical analysis, Sensors Actuators B Chem. 177 (2013) 138–144.
[10] R. Das, S. Ghosh, C. Bhattacharjee, Enzyme membrane reactor in isolation of antioxidative peptides from oil industry waste: A comparison with non-peptidic antioxidants, LWT-Food Sci. Technol. 47 (2012) 238–245.
[11] K. Luo, Q.I. Yang, J. Yu, X. Li, G. Yang, B. Xie, F. Yang, W. Zheng, G. Zeng, Combined effect of sodium dodecyl sulfate and enzyme on waste activated sludge hydrolysis and acidification, Bioresour. Technol. 102 (2011) 7103–7110.
[12] S. Akhtar, Q. Husain, Potential applications of immobilized bitter gourd (Momordica charantia) peroxidase in the removal of phenols from polluted water, Chemosphere. 65 (2006) 1228–1235.
[13] D. Tonini, T. Astrup, Life-cycle assessment of a waste refinery process for enzymatic treatment of municipal solid waste, Waste Manag. 32 (2012) 165–176.
[14] I.M. Atadashi, M.K. Aroua, A.A. Aziz, High quality biodiesel and its diesel engine application: a review, Renew. Sustain. Energy Rev. 14 (2010) 1999–2008.
[15] A.D. Smith, S.P. Datta, G.H. Smith, Oxford dictionary of biochemistry and molecular biology, Oxford University Press, 1997.
[16] A. Bairoch, The ENZYME database in 2000, Nucleic Acids Res. 28 (2000) 304–305.
[17] K.M. Koeller, C.-H. Wong, Enzymes for chemical synthesis, Nature. 409 (2001) 232.
[18] C.-H. Wong, G.M. Whitesides, Enzymes in synthetic organic chemistry, Elsevier, 1994.
[19] C. Mateo, J.M. Palomo, G. Fernandez-Lorente, J.M. Guisan, R. Fernandez-Lafuente, Improvement of enzyme activity, stability and selectivity via immobilization techniques, Enzyme Microb. Technol. 40 (2007) 1451–1463.
[20] E. Katchalski-Katzir, D.M. Kraemer, Eupergit® C, a carrier for immobilization of enzymes of industrial potential, J. Mol. Catal. B Enzym. 10 (2000) 157–176.
[21] R.A. Sheldon, Enzyme immobilization: the quest for optimum performance, Adv. Synth. Catal. 349 (2007) 1289–1307.
[22] I. Eş, J.D.G. Vieira, A.C. Amaral, Principles, techniques, and applications of biocatalyst immobilization for industrial application, Appl. Microbiol. Biotechnol. 99 (2015) 2065–2082.
[23] J.E. Leresche, H.-P. Meyer, Chemocatalysis and biocatalysis (biotransformation): some thoughts of a chemist and of a biotechnologist, Org. Process Res. Dev. 10 (2006) 572–580.
[24] W. Hartmeier, Immobilized biocatalysts—from simple to complex systems, Trends Biotechnol. 3 (1985) 149–153.
[25] P. V Iyer, L. Ananthanarayan, Enzyme stability and stabilization—aqueous and non-aqueous environment, Process Biochem. 43 (2008) 1019–1032.
[26] S. Spisak, A. Guttman, Biomedical applications of protein microarrays, Curr. Med. Chem. 16 (2009) 2806–2815.
[27] D.S. Clark, Can immobilization be exploited to modify enzyme activity?, Trends Biotechnol. 12 (1994) 439–443.
[28] S. Shanmugam, Enzyme technology, IK International Pvt Ltd, 2009.
[29] G.T.R. Kulkarni, Biotechnology and its applications in pharmacy, Jaypee Bros Medical Publishers, 2002.
[30] P.K. Jena, M. Rath, C.S. Mishra, K. Melal and Mineral Recovery Through Bioleaching, Biotechnol. Appl. Mishra, CSK, Champagne, P., Eds (IK Int. Publ. House Pvt. Ltd., New Delhi, India). (2009) 309–319.
[31] P.N. Krishna, Enzyme technology: pacemaker of biotechnology, PHI Learning Pvt. Ltd., 2011.
[32] J.M. Nelson, E.G. Griffin, Adsorption of Invertase, J. Am. Chem. Soc. 38 (1916) 1109–1115.
[33] D. Brady, J. Jordaan, Advances in enzyme immobilisation, Biotechnol. Lett. 31 (2009) 1639-1650.
[34] S. Cantone, V. Ferrario, L. Corici, C. Ebert, D. Fattor, P. Spizzo, L. Gardossi, Efficient immobilisation of industrial biocatalysts: criteria and constraints for the selection of organic polymeric carriers and immobilisation methods, Chem. Soc. Rev. 42 (2013) 6262–6276.
[35] J.R. Cherry, A.L. Fidantsef, Directed evolution of industrial enzymes: an update, Curr. Opin. Biotechnol. 14 (2003) 438–443.
[36] G. Massolini, E. Calleri, Immobilized trypsin systems coupled online to separation methods: Recent developments and analytical applications, J. Sep. Sci. 28 (2005) 7–21.
[37] U. Guzik, K. Hupert-Kocurek, D. Wojcieszyńska, Immobilization as a strategy for improving enzyme properties-application to oxidoreductases, Molecules. 19 (2014) 8995–9018.
[38] R.C. Rodrigues, C. Ortiz, Á. Berenguer-Murcia, R. Torres, R. Fernández-Lafuente, Modifying enzyme activity and selectivity by immobilization, Chem. Soc. Rev. 42 (2013) 6290–6307.
[39] F. Secundo, Conformational changes of enzymes upon immobilisation, Chem. Soc. Rev. 42 (2013) 6250–6261.
[40] A. Liese, L. Hilterhaus, Evaluation of immobilized enzymes for industrial applications, Chem. Soc. Rev. 42 (2013) 6236–6249.
[41] A. Ursini, P. Maragni, C. Bismara, B. Tamburini, Enzymatic method of preparation of opticallly active trans-2-amtno cyclohexanol derivatives, Synth. Commun. 29 (1999) 1369–1377.
[42] M. Goto, C. Hatanaka, M. Goto, Immobilization of surfactant–lipase complexes and their high heat resistance in organic media, Biochem. Eng. J. 24 (2005) 91–94.
[43] M.H.A. Janssen, L.M. van Langen, S.R.M. Pereira, F. van Rantwijk, R.A. Sheldon, Evaluation of the performance of immobilized penicillin G acylase using active site titration, Biotechnol. Bioeng. 78 (2002) 425–432.
[44] R.C. Rodrigues, A. Berenguer‐Murcia, R. Fernandez‐Lafuente, Coupling chemical modification and immobilization to improve the catalytic performance of enzymes, Adv. Synth. Catal. 353 (2011) 2216–2238.
[45] R.A. Sheldon, S. van Pelt, Enzyme immobilisation in biocatalysis: why, what and how, Chem. Soc. Rev. 42 (2013) 6223–6235.
[46] R. Ahmad, M. Sardar, Enzyme immobilization: an overview on nanoparticles as immobilization matrix, Biochem. Anal. Biochem. 4 (2015) 1.
[47] C. Spahn, S.D. Minteer, Enzyme immobilization in biotechnology, Recent Patents Eng. 2 (2008) 195–200.
[48] R.D. Johnson, Z.-G. Wang, F.H. Arnold, Surface site heterogeneity and lateral interactions in multipoint protein adsorption, J. Phys. Chem. 100 (1996) 5134–5139.
[49] S.F. D’souza, Immobilized enzymes in bioprocess, Curr. Sci. (1999) 69–79.
[50] J. Fu, J. Reinhold, N.W. Woodbury, Peptide-modified surfaces for enzyme immobilization, PLoS One. 6 (2011) e18692.
[51] V. Singh, M. Sardar, M.N. Gupta, Immobilization of enzymes by bioaffinity layering, in: Immobil. Enzym. Cells, Springer, 2013: pp. 129–137.
[52] M. Hartmann, X. Kostrov, Immobilization of enzymes on porous silicas–benefits and challenges, Chem. Soc. Rev. 42 (2013) 6277–6289.
[53] Z. Grosová, M. Rosenberg, M. Rebroš, M. Šipocz, B. Sedláčková, Entrapment of β-galactosidase in polyvinylalcohol hydrogel, Biotechnol. Lett. 30 (2008) 763–767.
[54] A. Deshpande, S.F. D’souza, G.B. Nadkarni, Coimmobilization of D-amino acid oxidase and catalase by entrapment ofTrigonopsis variabilis in radiation polymerised Polyacrylamide beads, J. Biosci. 11 (1987) 137–144.
[55] I. Galaev, B. Mattiasson, Smart polymers for bioseparation and bioprocessing, CRC Press, 2001.
[56] H.H.P. Yiu, M.A. Keane, Enzyme–magnetic nanoparticle hybrids: new effective catalysts for the production of high value chemicals, J. Chem. Technol. Biotechnol. 87 (2012) 583–594.
[57] Y. Zhou, S. Pan, X. Wei, L. Wang, Y. Liu, Immobilization of β-glucosidase onto magnetic nanoparticles and evaluation of the enzymatic properties, BioResources. 8 (2013) 2605–2619.
[58] J. Xu, J. Sun, Y. Wang, J. Sheng, F. Wang, M. Sun, Application of iron magnetic nanoparticles in protein immobilization, Molecules. 19 (2014) 11465–11486.
[59] S.A. Ansari, Q. Husain, Potential applications of enzymes immobilized on/in nano materials: a review, Biotechnol. Adv. 30 (2012) 512–523.
[60] R. Singh, M. Tiwari, R. Singh, J.-K. Lee, From protein engineering to immobilization: promising strategies for the upgrade of industrial enzymes, Int. J. Mol. Sci. 14 (2013) 1232–1277.
[61] M. Soleimani, A. Khani, K. Najafzadeh, α-Amylase immobilization on the silica nanoparticles for cleaning performance towards starch soils in laundry detergents, J. Mol. Catal. B Enzym. 74 (2012) 1–5.
[62] M.L. Verma, R. Chaudhary, T. Tsuzuki, C.J. Barrow, M. Puri, Immobilization of β-glucosidase on a magnetic nanoparticle improves thermostability: application in cellobiose hydrolysis, Bioresour. Technol. 135 (2013) 2–6.
[63] K. Thandavan, S. Gandhi, S. Sethuraman, J.B.B. Rayappan, U.M. Krishnan, Development of electrochemical biosensor with nano-interface for xanthine sensing–A novel approach for fish freshness estimation, Food Chem. 139 (2013) 963–969.
[64] L. Wei, W. Zhang, H. Lu, P. Yang, Immobilization of enzyme on detonation nanodiamond for highly efficient proteolysis, Talanta. 80 (2010) 1298–1304.
[65] Y.Z. Chen, C.T. Yang, C.B. Ching, R. Xu, Immobilization of lipases on hydrophobilized zirconia nanoparticles: highly enantioselective and reusable biocatalysts, Langmuir. 24 (2008) 8877–8884.
[66] X. Meng, G. Xu, Q.-L. Zhou, J.-P. Wu, L.-R. Yang, Highly efficient solvent-free synthesis of 1, 3-diacylglycerols by lipase immobilised on nano-sized magnetite particles, Food Chem. 143 (2014) 319–324.
[67] H.-H. Yang, S.-Q. Zhang, X.-L. Chen, Z.-X. Zhuang, J.-G. Xu, X.-R. Wang, Magnetite-containing spherical silica nanoparticles for biocatalysis and bioseparations, Anal. Chem. 76 (2004) 1316–1321.
[68] G.K. Kouassi, J. Irudayaraj, G. McCarty, Examination of cholesterol oxidase attachment to magnetic nanoparticles, J. Nanobiotechnology. 3 (2005) 1.
[69] G.A. Petkova, К. Záruba, P. Žvátora, V. Král, Gold and silver nanoparticles for biomolecule immobilization and enzymatic catalysis, Nanoscale Res. Lett. 7 (2012) 287.
[70] A.K. Johnson, A.M. Zawadzka, L.A. Deobald, R.L. Crawford, A.J. Paszczynski, Novel method for immobilization of enzymes to magnetic nanoparticles, J. Nanoparticle Res. 10 (2008) 1009–1025.
[71] N. Miletić, V. Abetz, K. Ebert, K. Loos, Immobilization of Candida antarctica lipase B on polystyrene nanoparticles, Macromol. Rapid Commun. 31 (2010) 71–74.
[72] A.Y. Chen, Z. Deng, A.N. Billings, U.O.S. Seker, M.Y. Lu, R.J. Citorik, B. Zakeri, T.K. Lu, Synthesis and patterning of tunable multiscale materials with engineered cells, Nat. Mater. 13 (2014) 515.
[73] P.Q. Nguyen, Z. Botyanszki, P.K.R. Tay, N.S. Joshi, Programmable biofilm-based materials from engineered curli nanofibres, Nat. Commun. 5 (2014) 4945.
[74] J.W. Costerton, Z. Lewandowski, D.E. Caldwell, D.R. Korber, H.M. Lappin-Scott, Microbial biofilms, Annu. Rev. Microbiol. 49 (1995) 711–745.
[75] H.H.P. Fang, L.-C. Xu, K.-Y. Chan, Effects of toxic metals and chemicals on biofilm and biocorrosion, Water Res. 36 (2002) 4709–4716.
[76] R. Gross, K. Lang, K. Bühler, A. Schmid, Characterization of a biofilm membrane reactor and its prospects for fine chemical synthesis, Biotechnol. Bioeng. 105 (2010) 705–717.
[77] V. Sivanathan, A. Hochschild, Generating extracellular amyloid aggregates using E. coli cells, Genes Dev. (2012) 2659-2667.
[78] V. Sivanathan, A. Hochschild, A bacterial export system for generating extracellular amyloid aggregates, Nat. Protoc. 8 (2013) 1381-1391.
[79] B. Zakeri, J.O. Fierer, E. Celik, E.C. Chittock, U. Schwarz-Linek, V.T. Moy, M. Howarth, Peptide tag forming a rapid covalent bond to a protein, through engineering a bacterial adhesin, Proc. Natl. Acad. Sci. 109 (2012) E690–E697.
[80] Z. Botyanszki, P.K.R. Tay, P.Q. Nguyen, M.G. Nussbaumer, N.S. Joshi, Engineered catalytic biofilms: Site‐specific enzyme immobilization onto E. coli curli nanofibers, Biotechnol. Bioeng. 112 (2015) 2016–2024.
[81] C. Altinkaynak, S. Tavlasoglu, I. Ocsoy, A new generation approach in enzyme immobilization: Organic-inorganic hybrid nanoflowers with enhanced catalytic activity and stability, Enzyme Microb. Technol. 93 (2016) 105–112.
[82] C. Ji, L.N. Nguyen, J. Hou, F.I. Hai, V. Chen, Direct immobilization of laccase on titania nanoparticles from crude enzyme extracts of P. ostreatus culture for micro-pollutant degradation, Sep. Purif. Technol. 178 (2017) 215–223.
[83] L. Lloret, G. Eibes, G. Feijoo, M.T. Moreira, J.M. Lema, F. Hollmann, Immobilization of laccase by encapsulation in a sol–gel matrix and its characterization and use for the removal of estrogens, Biotechnol. Prog. 27 (2011) 1570–1579.
[84] J. Hou, G. Dong, B. Luu, R.G. Sengpiel, Y. Ye, M. Wessling, V. Chen, Hybrid membrane with TiO2 based bio-catalytic nanoparticle suspension system for the degradation of bisphenol-A, Bioresour. Technol. 169 (2014) 475–483.
[85] C. Ji, J. Hou, K. Wang, Y. Zhang, V. Chen, Biocatalytic degradation of carbamazepine with immobilized laccase-mediator membrane hybrid reactor, J. Memb. Sci. 502 (2016) 11–20.
[86] R. Ricco, C. Pfeiffer, K. Sumida, C.J. Sumby, P. Falcaro, S. Furukawa, N.R. Champness, C.J. Doonan, Emerging applications of metal–organic frameworks, CrystEngComm. 18 (2016) 6532–6542.
[87] X. Wu, M. Hou, J. Ge, Metal–organic frameworks and inorganic nanoflowers: a type of emerging inorganic crystal nanocarrier for enzyme immobilization, Catal. Sci. Technol. 5 (2015) 5077–5085.
[88] R.W. Larsen, L. Wojtas, J. Perman, R.L. Musselman, M.J. Zaworotko, C.M. Vetromile, Mimicking heme enzymes in the solid state: metal–organic materials with selectively encapsulated heme, J. Am. Chem. Soc. 133 (2011) 10356–10359.
[89] Y. Chen, V. Lykourinou, C. Vetromile, T. Hoang, L.-J. Ming, R.W. Larsen, S. Ma, How can proteins enter the interior of a MOF? Investigation of cytochrome c translocation into a MOF consisting of mesoporous cages with microporous windows, J. Am. Chem. Soc. 134 (2012) 13188–13191.
[90] X. Lian, Y.-P. Chen, T.-F. Liu, H.-C. Zhou, Coupling two enzymes into a tandem nanoreactor utilizing a hierarchically structured MOF, Chem. Sci. 7 (2016) 6969–6973.
[91] W. Liu, C. Wu, C. Chen, B. Singco, C. Lin, H. Huang, Fast multipoint immobilized MOF bioreactor, Chem. Eur. J. 20 (2014) 8923–8928.
[92] W. Liu, N. Yang, Y. Chen, S. Lirio, C. Wu, C. Lin, H. Huang, Lipase‐supported metal–organic framework bioreactor catalyzes warfarin synthesis, Chem. Eur. J. 21 (2015) 115–119.
[93] F.-K. Shieh, S.-C. Wang, C.-I. Yen, C.-C. Wu, S. Dutta, L.-Y. Chou, J. V Morabito, P. Hu, M.-H. Hsu, K.C.-W. Wu, Imparting functionality to biocatalysts via embedding enzymes into nanoporous materials by a de novo approach: size-selective sheltering of catalase in metal–organic framework microcrystals, J. Am. Chem. Soc. 137 (2015) 4276–4279.
[94] K. Liang, R. Ricco, C.M. Doherty, M.J. Styles, S. Bell, N. Kirby, S. Mudie, D. Haylock, A.J. Hill, C.J. Doonan, Biomimetic mineralization of metal-organic frameworks as protective coatings for biomacromolecules, Nat. Commun. 6 (2015) 7240.
[95] M. Sánchez-Sánchez, N. Getachew, K. Díaz, M. Díaz-García, Y. Chebude, I. Díaz, Synthesis of metal–organic frameworks in water at room temperature: salts as linker sources, Green Chem. 17 (2015) 1500–1509.
[96] D. Ruano, M. Díaz-García, A. Alfayate, M. Sánchez-Sánchez, Nanocrystalline M-MOF-74 as heterogeneous catalysts in the oxidation of cyclohexene: Correlation of the activity and redox potential, ChemCatChem. 7 (2015) 674–681.
[97] X. Wu, J. Ge, C. Yang, M. Hou, Z. Liu, Facile synthesis of multiple enzyme-containing metal-organic frameworks in a biomolecule-friendly environment, Chem. Commun. 51 (2015) 13408–13411.
[98] Y. Chen, S. Ma, Biomimetic catalysis of metal-organic frameworks, Dalt. Trans. 45 (2016) 9744–9753.
[99] P.A. Sontz, J.B. Bailey, S. Ahn, F.A. Tezcan, A metal organic framework with spherical protein nodes: Rational chemical design of 3D protein crystals, J. Am. Chem. Soc. 137 (2015) 11598–11601.
[100] D. Fujita, M. Fujita, Fitting proteins into metal organic frameworks, ACS Cent. Sci. 1 (2015) 352–353.
[101] X. Wu, C. Yang, J. Ge, Z. Liu, Polydopamine tethered enzyme/metal-organic framework composites with high stability and reusability, Nanoscale. 7 (2015) 18883–18886.
[102] J. Shi, X. Wang, S. Zhang, L. Tang, Z. Jiang, Enzyme-conjugated ZIF-8 particles as efficient and stable Pickering interfacial biocatalysts for biphasic biocatalysis, J. Mater. Chem. B. 4 (2016) 2654–2661.
[103] V. Gascón, E. Castro-Miguel, M. Díaz-García, R.M. Blanco, M. Sanchez-Sanchez, In situ and post-synthesis immobilization of enzymes on nanocrystalline MOF platforms to yield active biocatalysts, J. Chem. Technol. Biotechnol. 92 (2017) 2583–2593.
[104] D. Klemm, B. Heublein, H.P. Fink, A. Bohn, Cellulose: Fascinating biopolymer and sustainable raw material, Angew. Chemie – Int. Ed. 44 (2005) 3358–3393.
[105] I. Siró, D. Plackett, Microfibrillated cellulose and new nanocomposite materials: A review, Cellulose. 17 (2010) 459–494.
[106] S. Iwamoto, A.N. Nakagaito, H. Yano, Nano-fibrillation of pulp fibers for the processing of transparent nanocomposites, Appl. Phys. A Mater. Sci. Process. 89 (2007) 461–466.
[107] S. Zhu, Y. Wu, Q. Chen, Z. Yu, C. Wang, S. Jin, Y. Ding, G. Wu, Dissolution of cellulose with ionic liquids and its application: A mini-review, Green Chem. 8 (2006) 325–327.
[108] X. Wu, F. Zhao, J.R. Varcoe, A.E. Thumser, C. Avignone-Rossa, R.C.T. Slade, Direct electron transfer of glucose oxidase immobilized in an ionic liquid reconstituted cellulose-carbon nanotube matrix, Bioelectrochemistry. 77 (2009) 64–68.
[109] S. Wang, S. Li, Y. Yu, Immobilization of cholesterol oxidase on cellulose acetate membrane for free cholesterol biosensor development, Artif. Cells. Blood Substit. Immobil. Biotechnol. 32 (2004) 413–425.
[110] M. Namdeo, S.K. Bajpai, Immobilization of α-amylase onto cellulose-coated magnetite (CCM) nanoparticles and preliminary starch degradation study, J. Mol. Catal. B Enzym. 59 (2009) 134–139.
[111] F. Rusmini, Z. Zhong, J. Feijen, Protein immobilization strategies for protein biochips, Biomacromolecules. 8 (2007) 1775–1789.
[112] S. Sulaiman, M.N. Mokhtar, M.N. Naim, A.S. Baharuddin, A. Sulaiman, A Review: Potential Usage of cellulose nanofibers (CNF) for enzyme immobilization via covalent interactions, Appl. Biochem. Biotechnol. 175 (2014) 1817–1842.