Thermomechanical and Magnetic Properties of Fe-Ni-Co-Al-Ta-B Superelastic Alloy

$12.50

Thermomechanical and Magnetic Properties of Fe-Ni-Co-Al-Ta-B Superelastic Alloy

Victor V. Koledov, Elvina T. Dilmieva, Vladimir S. Kalashnikov, Alexander P. Kamantsev, Alexey V. Mashirov, Svetlana V. von Gratowski, Vladimir G. Shavrov, Alexey V. Koshelev, Vedamanickam Sampath, Irek I. Musabirov, Rostislav M. Grechishkin

Abstract. The ingot of Fe40.71Ni27.33Co17.13Al12.05Ta2.73B0.05 alloy was produced by arc melting technique followed by heat treatment. The alloy ingot was cut by electro-discharge machining and was further subjected to rolling. The microstructure of surface, thermomechanical and magnetic properties were studied. The alloy exhibits superelasticity at temperature lower than 330 K. The hysteretic behavior of magnetization was observed. These properties can be explained by combination of states of the spin- and strain-glasses.

Keywords
Phase Transition, Shape Memory Effect, Superelasticity, Strain Glass, Spin Glass, Fe-Ni-Co-Al-Ta-B, Superstructures

Published online 11/15/2018, 6 pages
Copyright © 2018 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA

Citation: Victor V. Koledov, Elvina T. Dilmieva, Vladimir S. Kalashnikov, Alexander P. Kamantsev, Alexey V. Mashirov, Svetlana V. von Gratowski, Vladimir G. Shavrov, Alexey V. Koshelev, Vedamanickam Sampath, Irek I. Musabirov, Rostislav M. Grechishkin, ‘Thermomechanical and Magnetic Properties of Fe-Ni-Co-Al-Ta-B Superelastic Alloy’, Materials Research Proceedings, Vol. 9, pp 32-37, 2018

DOI: http://dx.doi.org/10.21741/9781644900017-7

The article was published as article 7 of the book Shape Memory Alloys

References
[1] A.A. Cherechukin et al., Shape memory effect due to magnetic field-induced thermoelastic martensitic transformation in polycrystalline Ni-Mn-Fe-Ga alloy. Phys. Lett. A. 291 (2001) 175. https://doi.org/10.1016/S0375-9601(01)00688-0
[2] Y. Tanaka et al., Ferrous polycrystalline shape-memory alloy showing huge superelasticity, Science. 327 (2010) 1488. https://doi.org/10.1126/science.1183169
[3] S. Bhowmick, S.K. Mishra, FNCATB Superelastic damper for seismic vibration mitigation, J. Intel. Mat. Syst. Str. 27 (2016) 2062. https://doi.org/10.1177/1045389X15620039
[4] T. Omori, K. Ando, M. Okano, X. Xu, Y. Tanaka, I. Ohnuma, K. Ishida, Superelastic effect in polycrystalline ferrous alloys, Science. 333 (2011) 68-71. https://doi.org/10.1126/science.1202232
[5] T. Omori, S. Abe, Y. Tanaka, D.Y. Lee, K. Ishida, R. Kainuma, Thermoelastic martensitic transformation and superelasticity in Fe-Ni-Co-Al-Nb-B polycrystalline alloy, Scripta Mater. 69 (2013) 812-815. https://doi.org/10.1016/j.scriptamat.2013.09.006
[6] D. Lee, T. Omori, R. Kainuma, Ductility enhancement and superelasticity in Fe-Ni-Co-Al-Ti-B polycrystalline alloy, J. Alloy. Compd. 617 (2014) 120-123. https://doi.org/10.1016/j.jallcom.2014.07.136
[7] Y. Tanaka, R. Kainuma, T. Omori, K. Ishida, Alloy Design for Fe-Ni-Co-Al-based Superelastic Alloys, Mater. Today: Proc. 2 (2015) S485-S492. https://doi.org/10.1016/j.matpr.2015.07.333
[8] G. Gurau, C. Gurau, V. Sampath, L.G. Bujoreanu, Investigations of a nanostructured FeMnSi shape memory alloy produced via severe plastic deformation, Int. J. Miner. Metall. Mater. 23 (2016) 1315-1322. https://doi.org/10.1007/s12613-016-1353-6
[9] V.S. Kalashnikov, V.V. Koledov, D.S. Kuchin, A.V. Petrov, V.G. Shavrov. A three-point bending test machine for studying the thermomechanical properties of shape memory alloys, Instrum. Exp. Tech. 61 (2018) 306-312. https://doi.org/10.1134/S0020441218020148