On Thermodynamic Description of Finite-Size Multiferroics


On Thermodynamic Description of Finite-Size Multiferroics

Ivan A. Starkov, Abdulkarim A. Amirov, Alexander S. Starkov

Abstract. We present an accurate description of the thermodynamic processes occurring in finite-size multiferroics. Our approach avoids the errors that stem from a misunderstanding of the basics of differential and variational calculus. That is, a rigorous formulation of the problem taking into account the presence of gradient terms is presented. The developed theoretical framework provides analysis of a multiferroic layer with consideration of flexoelectric effect.

Multiferroics, Boundary Conditions, Variational Principles, Multicaloric Effect

Published online 11/15/2018, 7 pages
Copyright © 2018 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA

Citation: Ivan A. Starkov, Abdulkarim A. Amirov, Alexander S. Starkov, ‘On Thermodynamic Description of Finite-Size Multiferroics’, Materials Research Proceedings, Vol. 9, pp 167-173, 2018

DOI: http://dx.doi.org/10.21741/9781644900017-32

The article was published as article 32 of the book Shape Memory Alloys

[1] L.D. Landau, E.M. Lifchits, L.P. Pitaevski, Course of theoretical physics: theory of elasticity, Pergamon, New York, 1981.
[2] P.V. Yudin, A.K. Tagantsev, Fundamentals of flexoelectricity in solids, Nanotechnology 24 (2013) 432001. https://doi.org/10.1088/0957-4484/24/43/432001
[3] I.A. Starkov, A.S. Starkov, Modeling of efficient solid-state cooler on layered multiferroics, IEEE T. Ultrason. Ferr. 61(2014) 1357-1363. https://doi.org/10.1109/TUFFC.2014.3043
[4] A.K. Tagantsev, A.S. Yurkov, Flexoelectric effect in finite samples, J. Appl. Phys. 112 (2012) 044103. https://doi.org/10.1063/1.4745037
[5] V.M. Agranovich, V.L Ginzburg, Spatial dispersion in crystal optics and the theory of excitons (Vol. 18), Interscience Publishers, New Delhi, 1966.
[6] M. Gharbi, Z.H. Sun, P. Sharma, K. White, S. El-Borgi, Flexoelectric properties of ferroelectrics and the nanoindentation size-effect, Int. J. Solid Struct. 48 (2011) 249-256. https://doi.org/10.1016/j.ijsolstr.2010.09.021
[7] R.D. Mindlin, Second gradient of strain and surface-tension in linear elasticity, Int. J. Solid Struct. 1 (1965) 417-438. https://doi.org/10.1016/0020-7683(65)90006-5
[8] A.S. Yurkov, Elastic boundary conditions in the presence of the flexoelectric effect, JETP Letters 94 (2011) 455-458. https://doi.org/10.1134/S0021364011180160
[9] L.E. Elsgolts, Differential equations and variational calculus, Nauka, Moscow, 1969.
[10] A.S. Starkov, O.V. Pakhomov, I.A. Starkov, Theoretical model for thin ferroelectric films and the multilayer structures based on them, J. Exp. Theor. Phys.+ 116 (2013) 987-994. https://doi.org/10.1134/S1063776113060149
[11] S.P. Zubko, N.Y. Medvedeva, The size effect in a layered ferroelectric structure. Tech. Phys. Lett.+ 40 (2014) 465-467. https://doi.org/10.1134/S1063785014060145