Electronic, Structural, and Magnetic Properties of the FeRh1–xPtx (x = 0.875 and 1)

$12.50

Electronic, Structural, and Magnetic Properties of the FeRh1–xPtx (x = 0.875 and 1)

Oksana O. Pavlukhina, Vasily D. Buchelnikov, Vladimir V. Sokolovskiy, Mikhail A. Zagrebin

Abstract. Using the ab initio study, we theoretically investigated the electronic, structural and magnetic properties of the FeRh1–xPtx (x = 0.875‒1). For the Pt concentrations х = 0.875, the spin configuration AFM-III is stable. For FePt the ferromagnetic phase is more stable. It is shown that the equilibrium lattice parameter and the type of magnetic ordering change with increasing Pt concentration. The simulated value of the Curie temperature for compositions is close to experimental data.

Keywords
Ab Initio Study, Supercell Approach, Ferro- And Antiferromagnetic Orders, Iron-Rhodium Alloy, Density of States

Published online 11/15/2018, 5 pages
Copyright © 2018 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA

Citation: Oksana O. Pavlukhina, Vasily D. Buchelnikov, Vladimir V. Sokolovskiy, Mikhail A. Zagrebin, ‘Electronic, Structural, and Magnetic Properties of the FeRh1–xPtx (x = 0.875 and 1)’, Materials Research Proceedings, Vol. 9, pp 109-113, 2018

DOI: http://dx.doi.org/10.21741/9781644900017-20

The article was published as article 20 of the book Shape Memory Alloys

References
[1] S. Cumpson, P. Hidding, R. Coehoorn, A hybrid recording method using thermally assisted writing and flux sensitive detection, IEEE Trans. Magn. 36 (2000) 2271-2275. https://doi.org/10.1109/20.908391
[2] J. Thiele, S. Maat, E. Fullerton, FeRh/FePt exchange spring films for thermally assisted magnetic recording media, Appl. Phys. Lett. 82 (2003) 2859-2861. https://doi.org/10.1063/1.1571232
[3] A. Gray, D. Cooke, P. Kruger, Electronic Structure Changes across the Metamagnetic Transition in FeRh via Hard X-Ray Photoemission, Phys. Rev. Lett. 108 (2012) 257208. https://doi.org/10.1103/PhysRevLett.108.257208
[4] M. Annaorazov, K. Asatryan, G. Myalikgulyev, S. Nikitin, A. Tishin, A. Tyurin, Alloys of the Fe-Rh system as a new class of working material for magnetic refrigerators, Cryog. 32 (1992) 867-872. https://doi.org/10.1016/0011-2275(92)90352-B
[5] A. Chirkova, K. Skokov, L. Schultz, N. Baranov, O. Gutfleisch, T. Woodcock, Giant adiabatic temperature change in FeRh alloys evidenced by direct measurements under cyclic conditions. Acta Mater. 106 (2016) 15-21. https://doi.org/10.1016/j.actamat.2015.11.054
[6] A. Jezierski, G. Borstel, Electronic and magnetic properties of Fe-Rh-TM alloys, J. Magn. Magn. Mater. 144 (2005) 81-82.
[7] S. Yuasa, H. Miyajima, Magnetic properties and phase transition in bct FeRh1–xPtx, alloys, Nucl. Instrum. Methods Phys. Res. Sect. B 76 (1993) 71-73. https://doi.org/10.1016/0168-583X(93)95136-S
[8] K. Takizawa, T. Ono, H, Miyajima, Magnetic phase transitions for body-centered tetragonal FeRh1-xPtx system. J. Magn. Magn. Mater. 226–230 (2001) 572-573. https://doi.org/10.1016/S0304-8853(00)01296-8
[9] O. Pavlukhina, V. Sokolovskiy, M, Zagrebin, V. Buchelnikov, Investigation of structural and magnetic properties of Fe-Rh-(Z) (Z = Co, Pt) alloys by first principles method, V. EPJ Web Conf. 2018. 185 (2018) 05005-4.
[10] O. Pavlukhina, V. Sokolovskiy, V. Buchelnikov, First principles study of the structural and magnetic properties of Fe(Rh, Pd) and Fe(Rh, Ni) alloys, Mater. Today: Proc. 4 (2017) 4642-4646. https://doi.org/10.1016/j.matpr.2017.04.044
[11] G. Kresse, J. Furthmuller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B. 54 (1996) 11169. https://doi.org/10.1103/PhysRevB.54.11169
[12] S. Yuasa, H. Miyajima, Y. Otani, Magneto-Volume and Tetragonal Elongation Effects on Magnetic Phase Transitions of Body-Centered Tetragonal FeRh1–xPtx, J. Phys. Soc. Jpn. 63 (1994) 3129-3144. https://doi.org/10.1143/JPSJ.63.3129