Phase Transitions in Ni(Co)-Mn-Sn Heusler Alloys: First-Principles Study


Phase Transitions in Ni(Co)-Mn-Sn Heusler Alloys: First-Principles Study

Vladimir V. Sokolovskiy, Olga N. Miroshkina, Mikhail A. Zagrebin, Vasiliy D. Buchelnikov

Abstract. Phase transitions in Heusler alloys Ni(Co)-Mn-Sn were investigated with the help of the density functional theory. The lattice parameters for equilibrium magnetic states were determined using ab initio calculations. Possible martensitic phase transitions from the cubic L21 structure to the tetragonal L10 state were predicted. It was found martensitic phase transition does not accompany with magnetic ordering change in case of ternary alloy Ni2Mn1.5Sn0.5. However, Co-doping leads to the structural transition accompanied by the change in the magnetic ordering from ferromagnetic to ferrimagnetic one.

Ab Initio Calculations, Heusler Alloys, First-Principles Study, Structural Properties

Published online 11/15/2018, 6 pages
Copyright © 2018 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA

Citation: Vladimir V. Sokolovskiy, Olga N. Miroshkina, Mikhail A. Zagrebin, Vasiliy D. Buchelnikov, ‘Phase Transitions in Ni(Co)-Mn-Sn Heusler Alloys: First-Principles Study’, Materials Research Proceedings, Vol. 9, pp 98-103, 2018


The article was published as article 18 of the book Shape Memory Alloys

[1] J. Liu, T. Gottschall, K.P. Skokov, J.D. Moore, O. Gutfleisch, Giant magnetocaloric effect driven by structural transitions, Nature Mater. 11 (2012) 620-626.
[2] T. Gottschall, K.P. Skokov, B. Frincu, O. Gutfleisch, Large reversible magnetocaloric effect in Ni-Mn-In-Co, Appl. Phys. Lett. 106 (2015) 021901.
[3] D.Y. Cong, S. Roth, L. Schultz, Magnetic properties and structural transformations in Ni–Co–Mn–Sn multifunctional alloys, Acta Materialia 60 (2012) 5335-5351.
[4] S. Fabbrici, G. Porcari, F. Cugini, Ma. Solzi, J. Kamarad, Z. Arnold, R. Cabassi, F. Albertini, Co and In doped Ni-Mn-Ga magnetic shape memory alloys: A thorough structural, magnetic and magnetocaloric study, Entropy 16 (2014) 2204-2222.
[5] F. Guillou, P. Courtois, L. Porcar, P. Plaindoux, D. Bourgault, V. Hardy, Calorimetric investigation of the magnetocaloric effect in Ni45Co5Mn37.5In12.5, J. Phys. D: Appl. Phys. 45 (2012) 255001.
[6] J.A. Monroe, I. Karaman, B. Basaran, W. Ito, R.Y. Umetsu, R. Kainuma, K.Koyama, Y.I. Chumlyakov, Direct measurement of large reversible magnetic-field-induced strain in Ni-Co-Mn-In metamagnetic shape memory alloys, Acta Mater. 60 (2012) 6883-6891.
[7] D.Y. Cong, S. Roth, Y.D. Wang, Superparamagnetism and superspin glass behaviors in multiferroic NiMn-based magnetic shape memory alloys, Phys. Status Solidi B. 251 (2014) 2126-2134.
[8] R. Kainuma, Y. Imano, W. Ito, Y. Sutou, H. Morito, S. Okamoto, O. Kitakami, K. Oikawa, A. Fujita, T. Kanomata, K. Ishida, Magnetic-field-induced shape recovery by reverse phase transformation, Nature 439 (2006) 957-960.
[9] R. Das, S. Sarma, A. Perumal, A. Srinivasan, Effect of Co and Cu substitution on the magnetic entropy change in Ni46Mn43Sn11 alloy, J. Appl. Phys. 109 (2011) 07A901.
[10] V.K. Sharma, M.K. Chattopadhyay, L.S. Sharath Chandra and S.B. Roy, Elevating the temperature regime of the large magnetocaloric effect in a NiMnIn alloy towards room temperature, J. Phys. D: Appl. Phys. 44 (2011) 145002.
[11] V.K. Sharmaa, M.K. Chattopadhyay, L.S. Sharath Chandra, Ashish Khandelwal, R.K. Meena, S.B. Roy, Scaling of the isothermal entropy change and magnetoresistance in Ni-Mn-In based off-stoichiometric Heusler alloys, Eur. Phys. J. Appl. Phys. 62 (2013) 30601.
[12] V. Sánchez-Alarcos, V. Recarte, J.I. Pérez-Landazábal, J.R. Chapelon, J.A. Rodríguez-Velamazán, Structural and magnetic properties of Cr-doped Ni-Mn-In metamagnetic shape memory alloys, J. Phys. D: Appl. Phys. 44 (2011) 395001.
[13] M. Khan, J. Jung, S.S. Stoyko, A. Mar, A. Quetz, T. Samanta, I. Dubenko, N. Ali, S. Stadler, K.H. Chow, The role of Ni-Mn hybridization on the martensitic phase transitions in Mn-rich Heusler alloys, Appl. Phys. Lett. 100 (2012) 172403.
[14] M. Khan, I. Dubenko, S. Stadler, J. Jung, S.S. Stoyko, A. Mar, A. Quetz, T. Samanta, N. Ali, K.H. Chow, Enhancement of ferromagnetism by Cr doping in Ni-Mn-Cr-Sb Heusler alloys, Appl. Phys. Lett. 102 (2013) 112402.
[15] G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54 (1996) 11169-11186.
[16] G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B 59 (1999) 1758-1775.
[17] P. Hohenberg, W. Kohn, Inhomogeneous Electron Gas, Phys. Rev. 136 (1964) B864-B871.
[18] W. Kohn, L.J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects, Phys. Rev. 140 (1965) A1133-A1138.
[19] P.E. Blöchl, Projector augmented-wave method, Phys. Rev. B 50 (1994) 17953-17979.
[20] J.P. Perdew, K. Burke, and M. Enzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett. 77 (1996) 3865-3868.
[21] H.J. Monkhorst, J.D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B 13 (1976) 5188-5192.
[22] C.W. Glass, A.R. Oganov, N. Hansen, USPEX – Evolutionary crystal structure prediction, Comp. Phys. Comm. 175 (2006) 713-720.
[23] A.O. Lyakhov, A.R. Oganov, H.T. Stokes, Q. Zhu, New developments in evolutionary structure prediction algorithm USPEX, Comp. Phys. Comm. 184 (2013) 1172-1182.