Properties of Fe-Ga and Fe-Ga-V Alloys: Ab Initio Study


Properties of Fe-Ga and Fe-Ga-V Alloys: Ab Initio Study

Mariya V. Matyunina, Mikhail A. Zagrebin, Vladimir V. Sokolovskiy, Vasiliy D. Buchelnikov

Abstract. Structural and magnetic properties of Fe73.44Ga26.56 and Fe73.44Ga17.18V9.38 alloys have been studied by means of ab initio calculations. It was shown that the adding of V atoms into Fe-Ga alloy stabilized the D03 structure and changes the shear modulus sign from negative
to positive. Moreover, the total magnetic moment is decreased by 10 % and 16 % for D03 and L12 structures, respectively. The Curie temperatures of the studied compositions were estimated. It was found that in case of Fe73.44Ga26.56 the calculated Curie temperature of L12 structure is in an agreement with the experimental data.

Ab Initio Calculations, Shear Modulus, Curie Temperature, Fe-Ga, Fe-Ga-V

Published online 11/15/2018, 6 pages
Copyright © 2018 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA

Citation: Mariya V. Matyunina, Mikhail A. Zagrebin, Vladimir V. Sokolovskiy, Vasiliy D. Buchelnikov, ‘Properties of Fe-Ga and Fe-Ga-V Alloys: Ab Initio Study’, Materials Research Proceedings, Vol. 9, pp 92-97, 2018


The article was published as article 17 of the book Shape Memory Alloys

[1] Y.C. Lin, C.F. Lin, Microstructures and Magnetic Properties of Fe-Ga and Fe-Ga-V Ferromagnetic Shape Memory Alloys, IEEE T. Mag. 51 (2015) 2505204.
[2] J. B. Restorff,1 M. Wun-Fogle, K. B. Hathaway, A. E. Clark, T. A. Lograsso, G. Petculescu, Tetragonal magnetostriction and magnetoelastic coupling in Fe-Al, Fe-Ga, Fe-Ge, Fe-Si, Fe-Ga-Al, and Fe-Ga-Ge alloys, J. Appl. Phys. 111 (2012), 023905.
[3] G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54 (1996) 11169-11186.
[4] G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B 59 (1999) 1758-1775.
[5] J. P. Perdew, K. Burke, M. Enzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett. 77 (1996) 3865-3868.
[6] H.J. Monkhorst, J.D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B. 13 (1976) 5188-5192.
[7] I.A. Abrikosov, A.Y. Nikonov, A.V. Ponomareva, A.I. Dmitriev, S.A. Baran-nikova, Theoretical modeling of thermodynamic and mechanical properties of the pure components of Ti and Zr based alloys using the exact muffin-tin orbitals method, Usp. Fiz. Met. 14 (2013) 319-352.
[8] S.O. Kart, T.Cagın, Elastic properties of Ni2MnGa from first-principles calculations, J. Alloy. Comp. 508 (2010) 177-183.
[9] A.I. Liechtenstein, M.I. Katsnelson, V.P. Antropov, V.A. Gubanov, Local spin density functional approach to the theory of exchange interactions in ferromagnetic metals and alloys, J. Magn. Magn. Mater. 67 (1987) 65-74.
[10] H. Ebert, D. Ködderitzsch and J. Minár, Calculating condensed matter properties using the KKR-Green’s function method-recent developments and applications, Rep. Prog. Phys. 74 (2011) 096501.
[11] S.H. Vosko, L. Wilk, M. Nusair, Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis, Canadian J. of Phys., 58 (1980) 1200-1211.
[12] V.V. Sokolovskiy, V.D. Buchelnikov, M.A. Zagrebin, S.V. Taskaev, V.V. Khovaylo and P. Entel, Ab initio study of magnetic properties of Fe-Mn-Al Heusler alloys, Mater. Res. Soc. Symp. Proc. 1581 (2013) 44-49.
[13] H. Okamoto, The Fe-Ga (Iron-Gallium) System, Bull. Alloy Phase Diagrams 11 (1990) 576-581.