Surface Modification of Ti-Nb-Zr Foams by Poly(3-Hydroxybutyrate)

$12.50

Surface Modification of Ti-Nb-Zr Foams by Poly(3-Hydroxybutyrate)

Vadim A. Sheremetyev, Anton P. Bonartsev, Sergey M. Dubinskiy, Yulia S. Zhukova, Garina A. Bonartseva, Tatiana K. Makhina, Elizaveta A. Akoulina, Elina V. Ivanova, Maria S. Kotlyarova, Sergey D. Prokoshkin, Vladimir Brailovski, Konstantin V. Shaitan

Abstract In this study, Ti-Nb-Zr superelastic foams were produced, characterized from the standpoint of their morphology and mechanical properties. To improve biocompatibility of these foams, they were subjected to surface modification by Poly(3-Hydroxybutyrate). The two-stage immersion of the Ti-Nb-Zr foams in the PHB-containing solution allows forming on their surface continuous polymer layers with incorporation of 6.4 % (w/w) of PHB.

Keywords
Biomaterials, Shape Memory Materials, Porous Materials, Polymers, Surfaces

Published online 11/15/2018, 6 pages
Copyright © 2018 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA

Citation: Vadim A. Sheremetyev, Anton P. Bonartsev, Sergey M. Dubinskiy, Yulia S. Zhukova, Garina A. Bonartseva, Tatiana K. Makhina, Elizaveta A. Akoulina, Elina V. Ivanova, Maria S. Kotlyarova, Sergey D. Prokoshkin, Vladimir Brailovski, Konstantin V. Shaitan, ‘Surface Modification of Ti-Nb-Zr Foams by Poly(3-Hydroxybutyrate)’, Materials Research Proceedings, Vol. 9, pp 74-79, 2018

DOI: http://dx.doi.org/10.21741/9781644900017-15

The article was published as article 15 of the book Shape Memory Alloys

References
[1] M. Geetha, A.K. Singh, R. Asokamani, A.K. Gogia, Ti based biomaterials, the ultimate choice for orthopaedic implants – A review. Prog. in Mater. Sci. 54(3) (2009) 397-425. https://doi.org/10.1016/j.pmatsci.2008.06.004
[2] S. Miyazaki, H.Y. Kim, H. Hosoda, Development and characterization of Ni-free Ti-base shape memory and superelastic alloys, Mater. Sci. and Eng.: A. 438 (2006) 18-24. https://doi.org/10.1016/j.msea.2006.02.054
[3] V. Brailovski, S. Prokoshkin, M. Gauthier, K. Inaekyan, S. Dubinskiy, M. Petrzhik, M. Filonov. Bulk and porous metastable beta Ti–Nb–Zr(Ta) alloys for biomedical applications, Mater. Sci. and Eng.: C. 31 (2011) 643-657. https://doi.org/10.1016/j.msec.2010.12.008
[4] V. Sheremetyev, V. Brailovski, S.Prokoshkin, K. Inaekyan, S. Dubinskiy, Functional fatigue behavior of superelastic beta Ti-22Nb-6Zr(at%) alloy for load-bearing biomedical applications, Mater. Sci. and Eng.: C. 58 (2016) 935-944. https://doi.org/10.1016/j.msec.2015.09.060
[5] M. Niinomi, Recent titanium R&D for biomedical applications in Japan, JOM. 51 (1999) 32-34. https://doi.org/10.1007/s11837-999-0091-x
[6] G. Lewis, Properties of open-cell porous metals and alloys for orthopaedic applications, J. Mater. Sci.: Mater. in Med. 24 (2013) 2293-2325. https://doi.org/10.1007/s10856-013-4998-y
[7] X. Wang, Y. Li, J. Xiong, P. D. Hodgson, C. Wen. Porous TiNbZr alloy scaffolds for biomedical application, Acta Biomater. 5(9) (2009) 3616-3624. https://doi.org/10.1016/j.actbio.2009.06.002
[8] W. Niu, C. Bai, G. Qiu, Q. Wang. Processing and properties of porous titanium using space holder technique, Mater. Sci. and Eng.: A 506 (2009) 148-151. https://doi.org/10.1016/j.msea.2008.11.022
[9] J. Rivard, V. Brailovski, S. Dubinskiy, S. Prokoshkin, Fabrication, morphology and mechanical properties of Ti and metastable Ti-based alloy foams for biomedical applications, Mater. Sci. and Eng.: C. 45 (2014) 421-433. https://doi.org/10.1016/j.msec.2014.09.033
[10] A.P. Bonartsev, S.G. Yakovlev, E.V. Filatova, G.M. Soboleva, T.K. Makhina, G.A. Bonartseva, K.V. Shaitan, V.O. Popov, M.P. Kirpichnikov, Sustained release of the antitumor drug paclitaxel from poly(3-hydroxybutyrate)-based microspheres. Bioch. (Moscow) Suppl. Ser. B: Biomed. Chem. 6 (2012) 42-47.
[11] A.P. Bonartsev, I.I. Zharkova, S.G. Yakovlev, V.L. Myshkina, T.K. Mahina, V.V. Voinova, A.L. Zernov, V.A. Zhuikov, E.A. Akoulina, E.V. Ivanova, E.S. Kuznetsova, K.V. Shaitan, G.A. Bonartseva, Biosynthesis of poly(3-hydroxybutyrate) copolymers by Azotobacter chroococcum 7B: A precursor feeding strategy, Prep. Biochem. and Biotech. 47 (2017) 173-184. https://doi.org/10.1080/10826068.2016.1188317
[12] Standard Test Methods for Apparent Porosity, Water Absorption, Apparent Specific Gravity, and Bulk Density of Burned Refractory Brick and Shapes by Boiling Water, ASTM International, West Conshohocken (PA) (2010), p. 3
[13] L. Peroni, M. Avalle, M. Peroni, The mechanical behaviour of aluminium foam structures in different loading conditions, Inter. J. Imp. Eng. 35 (2008) 644-658. https://doi.org/10.1016/j.ijimpeng.2007.02.007