Contemporary Dielectric Materials

Ed. R. Saravanan

Handbook

This book deals with experimental results of the physical characterization of several important, dielectric materials of great current interest. The experimental tools used for the analysis of these materials include X-ray diffraction, dielectric measurements, magnetic measurements using a vibrating sample magnetometer, optical measurements using a UV-Visible spectrometer etc.

Keywords: Materials Science, Dielectric Materials, Nanocrystalline NiO, GaO Powders, Multiferroic Material, ZnO Nanoparticles, ZnO Ceramics

ISBN 13: 978-1-945291-12-8
Publication Date: 2017 (1/1/2017)
Direct URL: http://www.mrforum.com/product/contemporary-dielectric-materials/
156 pages, color print, paperback, USD 100.00
BISAC Subject Classification code: TEC021000
BIC/Thema Subject Classification code: TGM
Imprint: Materials Research Forum LLC, publisher’s sales rights are Worldwide
Product Form: bc

Summary:
This book deals with experimental results of the physical characterization of several important, dielectric materials of great current interest. The experimental tools used for the analysis of these materials include X-ray diffraction, dielectric measurements, magnetic measurements using a vibrating sample magnetometer, optical measurements using a UV-Visible spectrometer etc.

The materials studied and reported in this book are as follows; the impedance analysis of nanocrystalline NiO prepared using the combustion method; PL (photoluminescence, IR (Infra-red, Raman, and X-ray characterization of GaO powders prepared using the chemical method; X-ray, SEM (Scanning Electron Microscopy), VSM (Vibrating Sample Magnetometer), UV-Vis (UltraViolet-Visible) characterization of the multiferroic material Ga2-xFexO3 prepared using the SSR (Solid State Reaction) method; XRD and optical studies on sol-gel prepared samarium and manganese substituted calcium hydroxyapatite; defect studies and positron annihilation studies on ZnO nano particles prepared using the sol-gel and combustion methods; Bonding in La0.9Zn0.1FeO3 multiferroic material prepared using the chemical method; effect of temperature on the magnetic phase transition in Co0.5Zn0.5Fe2O4 prepared using the mechanical alloying method; effect of sintering temperature on the micro structure and optical properties of ZnO ceramics.