Caracterisation of high manganese silicides prepared by mechanical milling

Caracterisation of high manganese silicides prepared by mechanical milling

Victor CEBOTARI, Florin POPA, Traian Florin MARINCA, Violeta POPESCU, Ionel CHICINAŞ

download PDF

Abstract. The mechanical milling of manganese and silicon powder in a planetary ball mill up to 18 h was performed. In the X-ray diffraction pattern recorded after 18 hours of milling the MnSi phase and Mn15Si26 compound are detected. The agglomeration of powders after complete reaction of the elements was observed by scanning electron microscopy. Heating up at 1000 °C, an unreacted sample, milled 4 hours, has found to have the effect of completing the reaction of elements, but forms oxides. Handling of the powder during sampling, without protective atmosphere was found to form oxides. The oxidation of the samples was evidenced by FTIR analysis.

Thermoelectric, Higher Manganese Silicide, MnSi phase, Mechanical Alloying

Published online 11/5/2018, 9 pages
Copyright © 2018 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA

Citation: Victor CEBOTARI, Florin POPA, Traian Florin MARINCA, Violeta POPESCU, Ionel CHICINAŞ, ‘Caracterisation of high manganese silicides prepared by mechanical milling’, Materials Research Proceedings, Vol. 8, pp 80-88, 2018


The article was published as article 9 of the book Powder Metallurgy and Advanced Materials

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

[1] M. S. Dresselhaus, G. Chen, M. Y. Tang, R. Yang, H. Lee, D. Wang, Z. Ren, J. P. Fleurial, P. Gogna, New directions for low-dimensional thermoelectric materials, Adv. Mater. 19 (2007) 1043–1053.
[2] Z. Du, T. Zhu, X. Zhao, Enhanced thermoelectric properties of Mg2Si0.58Sn0.42 compounds by Bi doping, Mater. Letter. 66 (2012) 76–78.
[3] T. Yamada, Y. Miyazaki, H. Yamane, Preparation of Higher Manganese Silicide (HMS) bulk and Fe-containing HMS bulk using a Na–Si melt and their thermoelectrical properties, Thin Solid Films 519 (2011) 8524–8527.
[4] X. Hu, D. Mayson, M. R. Barnett, Synthesis of Mg2Si for thermoelectric applications using magnesium alloy and spark plasma sintering, J All. Compd. 589 (2014) 485–490.
[5] X. Chen, L. Shi, J. Zhou, J. B. Goodenough, Effects of ball milling on microstructures and thermoelectric properties of higher manganese silicides, J All. Compd. 641 (2015) 30–36.
[6] Z. Zamanipoura, X. Shia, M. Mozafari, J. S. Krasinski, L. Tayebib, D. Vashaee, Synthesis, characterization, and thermoelectric properties of nanostructured bulk p-type MnSi1.73, MnSi1.75, and MnSi1.77, Ceram. Int. 39 (2013) 2353–2358.
[7] D. B. Migas, V. L. Shaposhnikov, A. B. Filonov, and V. E. Borisenko, Ab initio study of the band structures of different phases of higher manganese silicides, Phys. Rev. B 77 (2008) 075205.
[8] H. Lee, G. Kim, B. Lee, J. Kim, S. M. Choi, K. H. Lee, W. Lee, Effect of Si content on the thermoelectric transport properties of Ge-doped higher manganese silicides, Scripta Mater. 135 (2017) 72–75.
[9] A.J. Zhou, X.B. Zhao, T.J. Zhu, Y.Q. Cao, C. Stiewe, R. Hassdorf, E. Mueller, Composites of higher manganese silicides and nanostructured secondary phases and their thermoelectric properties, J Electron Mater. 38 (2009) 1072-1077.
[10] A.J. Zhou, X.B. Zhao, T.J. Zhu, T. Dasgupta, C. Stiewe, R. Hassdorf, E. Mueller, Mechanochemical decomposition of higher manganese silicides in the ball milling process, Intermetallics 18 (2010) 2051-2056.
[11] D.Y.N. Truong, H. Kleinke, F. Gascoin, Preparation of pure Higher Manganese Silicides through wet ball milling and reactive sintering with enhanced thermoelectric properties, Intermetallics 66 (2015) 127-132.
[12] T. Itoh, S. Uebayashi, Cobalt an iron doping effect on thermo-electric properties of higher manganese silicides prepared by mechanical milling and pulse discharge sintering, J Jpn. Soc. Powder Powder Metall. 63 (2016) 491-496.
[13] D. K. Shin, K. W. Jang, S. C. Ur, I. H. Kim, Thermoelectric properties of higher manganese silicides prepared by mechanical alloying and hot pressing, J Electron Mater. 42 (2013) 1756-1761.
[14] M. Saleemi, A. Famengo, S. Fiameni, S. Boldrini, S. Battiston, M. Johnsson, M. Muhammed, M.S. Toprak, Thermoelectric performance of higher manganese silicide nanocomposites Journal of Alloys and Compounds 619 (2015) 31–37.
[15] V. Ponnambalam, D. T. Morelli, S. Bhattacharya, T. M. Tritt The role of simultaneous substitution of Cr and Ru on the thermoelectric properties of defect manganese silicides MnSiδ (1.73 < δ < 1.75), J All. Compd. 580 (2013) 598–603. [16] L.D. Ivanova, Preparation of thermoelectric materials based on higher manganese silicide, Inorganic Mater. 47 (2011) 965–970. [17] W. Luo, H. Li, F. Fu, W. Hao, X. Tang Improved thermoelectric properties of Al-doped higher manganese silicide prepared by a rapid solidification method, J. Electron. Mater. 40 (2011) 1233-1237. [18] A.J. Zhou, T.J. Zhu, X.B. Zhao, S.H. Yang, T. Dasgupta, C. Stiewe, R. Hassdorf, E. Mueller, Improved thermoelectric performance of Higher Manganese Silicides with Ge additions J. Electron. Mater. 39 (2010) 2002-2007. [19] T.F. Marinca, H.F. Chicinas, B.V. Neamt, O. Isnard, P. Pascuta, N. Lupu, G. Stoian, I. Chicinas¸ Mechanosynthesis, structural, thermal and magnetic characteristics of oleic acid coated Fe3O4 nanoparticles, Mater. Chem. Phys. 171 (2016) 336-345. [20] T. Itoh, M. Yamada, Synthesis of thermoelectric Manganese Silicide by mechanical alloying and pulse discharge sintering J. Electron. Mater. 38 (2009) 925-929. [21] T.F. Marinca, B.V. Neamtu, F. Popa, V.F. Tarta, P. Pascuta, A.F. Takacs, I. Chicinas, Synthesis and characterization of the NiFe2O4/Ni3Fe nanocomposite powder and compacts obtained by mechanical milling and spark plasma sintering, Appl. Surf. Sci. 285P (2013) 2-9. [22] A. Belhadi, L. Boudjellal, S. Boumaza, M. Trari. Hydrogen production over the hetero-junction MnO2/SiO2. Int. J Hydrogen Energy 43 (2017) 3418-3423. [23] T. K. Ghorai, S. Pramanik, P. Pramanik, Synthesis and photocatalytic oxidation of different organic dyes by using Mn2O3/TiO2 solid solution and visible light, Appl. Surf. Sci. 255 (2009) 9026–9031. [24] X. Yang, L. Zhao, L. Zheng, M. Xu, X. Cai, Polyglycerol grafting and RGD peptide conjugation on MnO nanoclusters for enhanced colloidal stability, selective cellular uptakeand cytotoxicity, Colloids and Surfaces B: Biointerfaces 163 (2018) 167–174. [25] M. Zheng, H. Zhang, X. Gong, R. Xu, Y. Xiao, H. Dong, X. Liu, Y. Liu, A simple additive-free approach for the synthesis of uniform manganese monoxide nanorods with large specific surface area, Nanoscale Res. Lett. 1 (2013), 166. [26] G. Nuyts, S.e Cagno, K. Hellemans, G. Veronesi, M. Cotte, K. Janssens, Study of the early stages of Mn intrusion in corroded glass by means of combined SR FTIR/μXRF imaging and XANES spectroscopy, Procedia Chem. 8 (2013) 239-247. [27] M. Abdelmouleh, S. Boufi, M.N. Belgacem, A.P. Duarte, A. Ben Salah, A. Gandini, Modification of cellulosic fibres with functionalised silanes: development of surface properties Int. J. Adhes. Adhes. 24 (2004) 43–54. [28] S. A. Moon, B. K. Salunke, B. Alkotaini, E. Sathiyamoorthi, B. S. Kim, Biological synthesis of manganese dioxide nanoparticles by Kalopanax pictus plant extract IET, Nanobiotechnol. 9 (2015) 220-225. [29] W. Laminack, J. L. Gole, M. G. White, S. Ozdemir, A. G. Ogden, H. J. Martin, Z. Fang, T. H. Wang, D. A. Dixon, Synthesis of nanoscale silicon oxide oxidation state distributions: The transformation from hydrophilicity to hydrophobicity, Chem. Phys. Lett. 653 (2016) 137–143. [30] B.V. Neamtu, O. Isnard, I. Chicinas, C. Vagner, N. Jumate, P. Plaindoux, Influence of benzene on the Ni3Fe nanocrystalline compound formation by wet mechanical alloying: An investigation combining DSC, X-ray diffraction, mass and IR spectrometries, Mater. Chem. Phys. 125 (2011) 364–369. [31] Y. Xu, H. Lin, Y. Li, H. Zhang The mechanism and efficiency of MnO2 activated persulfate process coupled with electrolysis Science of the Total Environment 609 (2017) 644–654.