Atomic force microscopy analyses on metallic thin films for optical MEMS

Atomic force microscopy analyses on metallic thin films for optical MEMS

Violeta Valentina MERIE, Marius Sorin PUSTAN, Gavril NEGREA, Corina BÎRLEANU

download PDF

Abstract. This paper is a study on three metallic thin films usable for manufacturing optical MEMS. The films were deposited by thermal evaporation on glass substrates. They were characterized from the topographical, tribological and mechanical point of view at nanoscale. The results pointed out that the silver thin films present higher values of the tribological and mechanical properties than the other two films when testing at room temperature. Increasing the testing temperature from 20 to 100 °C caused a decreased of both hardness and Young’s modulus with about 30 up to 55 %.

Keywords
Metallic films, Spectroscopy in point, Work of adhesion, Friction, Nanoindentation

Published online 11/5/2018, 9 pages
Copyright © 2018 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA

Citation: Violeta Valentina MERIE, Marius Sorin PUSTAN, Gavril NEGREA, Corina BÎRLEANU, ‘Atomic force microscopy analyses on metallic thin films for optical MEMS’, Materials Research Proceedings, Vol. 8, pp 125-133, 2018

DOI: http://dx.doi.org/10.21741/9781945291999-14

The article was published as article 14 of the book Powder Metallurgy and Advanced Materials

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

References
[1] S.M. Han, R. Saha, W.D. Nix, Determining hardness of thin films in elastically mismatched film-on-substrate systems using nanoindentation, Acta Mater. 54 (2006) 1571-1581. https://doi.org/10.1016/j.actamat.2005.11.026
[2] C.L. Linslal, P.M. Syam Mohan, A. Halder, T.K. Gangopadhyay, Analysis and modeling of an optical fiber loop resonator and an evanescent field absorption sensor for the application for chemical detection, Sens. Actuators A 194 (2013) 160-168. https://doi.org/10.1016/j.sna.2013.01.021
[3] E.M. Bourim, H.-Y. Kim, J.-S. Yang, J.-W. Yang, K.-S. Woo, J.-H. Song, S.-K. Yun, Creep behavior of undoped and La–Nb codoped PZT based micro-piezoactuators for micro-optical modulator applications, Sens. Actuators A 155 (2009) 290-298. https://doi.org/10.1016/j.sna.2009.08.020
[4] W. Hortschitz, H. Steiner, M. Sachse, F. Kohl, J. Schalko, F. Keplinger, Hybrid optical MEMS vibration sensor, Procedia Eng. 5 (2010) 420–423. https://doi.org/10.1016/j.proeng.2010.09.136
[5] C. Winter, L. Fabre, F. Lo Conte, L. Kilcher, F. Kechana, N. Abelé, M. Kayal, Micro-beamer based on MEMS micro-mirrors and laser light source, Procedia Chem. 1 (2009) 1311–1314. https://doi.org/10.1016/j.proche.2009.07.327
[6] N. Barbosa, R.R. Keller, D.T. Read, R.H. Geiss, R.P. Vinci, Comparison of electrical and microtensile evaluations of mechanical properties of an aluminum film, Metall. Mater. Trans. A 38A (2007) 2160-2167. https://doi.org/10.1007/s11661-007-9112-y
[7] J. Martinez-Quijada, S. Caverhill-Godkewitsch, M. Reynolds, L. Gutierrez-Rivera, R.W. Johnstone, D.G. Elliott, D. Sameoto, C.J. Backhouse, Fabrication and characterization of aluminum thin film heaters and temperature sensors on a photopolymer for lab-on-chip systems, Sens. Actuators A 193 (2013) 170–181. https://doi.org/10.1016/j.sna.2013.01.035
[8] O. Okman, J. W. Kysar, Fabrication of crack-free blanket nanoporous gold thin films by galvanostatic dealloying, J. Alloys Compd. 509 (2011) 6374–6381. https://doi.org/10.1016/j.jallcom.2011.02.115
[9] V. Raffa, B. Mazzolai, A. Mondini, V. Mattoli, A. Menciassi, P. Dario, Investigation on a sensitive Au thin film deposited on different substrates: Physical analysis via FIB and chemical analysis via evaluation of Au sensitivity to Hg0, Sens. Actuators B 122 (2007) 475–483. https://doi.org/10.1016/j.snb.2006.06.013
[10] Y. Nakanishi, K. Kato, H. Omoto, T. Tomioka, Improvement in salt-water durability of Ag thin films deposited by magnetron sputtering using argon and nitrogen mixed gas, Vac.87 (2013) 232-236. https://doi.org/10.1016/j.vacuum.2012.02.053
[11] I.C. Estrada-Raygoza, M. Sotelo-Lerma, R. Ramírez-Bon, Structural and morphological characterization of chemically deposited silver films, J. Phys. Chem. Solids 67 (2006) 782–788. https://doi.org/10.1016/j.jpcs.2005.10.183
[12] Y. Cao, S. Allameh, D. Nankivil, S. Sethiaraj, T. Otiti, W. Soboyejo, Nanoindentation measurements of the mechanical properties of polycrystalline Au and Ag thin films on silicon substrates: Effects of grain size and film thickness, Mater. Sci. Eng. A 427 (2006) 232–240. https://doi.org/10.1016/j.msea.2006.04.080
[13] B. Arrazat, V. Mandrillon, K. Inal, M. Vincent, C. Poulain, Microstructure evolution of gold thin films under spherical indentation for micro switch contact applications, J. Mater. Sci. 46 (2011) 6111–6117. https://doi.org/10.1007/s10853-011-5575-8
[14] I. Dutta, M. Burkhard, S. Kuwano, T. Fujita, M.W. Chen, Correlation between surface whisker growth and interfacial precipitation in aluminum thin films on silicon substrates, J. Mater. Sci. 45 (2010) 3367-3374. https://doi.org/10.1007/s10853-010-4359-x
[15] A. Hojabri, Z. Kavyani, M. Ghoranneviss, Effect of substrate temperatures on structural and morphological properties of nano-crystalline silver thin films grown on silicon substrates, J. Inorg. Organomet. Polym. Mater. 27 (2017) 53-60. https://doi.org/10.1007/s10904-016-0443-2
[16] W.C. Oliver, G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J. Mater. Res.7 (1992) 1564-1583. https://doi.org/10.1557/JMR.1992.1564
[17] V. Merie, M. Pustan, G. Negrea, C. Birleanu, Research on titanium nitride thin films deposited by reactive magnetron sputtering for MEMS applications, Appl. Surf. Sci. 358 (2015) 525-532. https://doi.org/10.1016/j.apsusc.2015.07.063
[18] M.A. Hopcroft, W.D. Nix, T.K. Kenny, What is the Young’s modulus of silicon?, J. Microelectromech. Syst. 19 (2010) 229-238. https://doi.org/10.1109/JMEMS.2009.2039697
[19] J. Drelich, Adhesion forces measured between particles and substrates with nano-roughness, Miner. Metall. Process. 23 (2006) 226-232.
[20] C.-W. Baek, Y.-K. Kim, Y. Ahn, Y.-H. Kim, Measurement of the mechanical properties of electroplated gold thin films using micromachined beams structures, Sens. Actuators A 117 (2005) 17-27. https://doi.org/10.1016/j.sna.2003.11.041
[21] H.D. Esponisa, B.C. Prorok, Size effects on the mechanical behavior of gold thin films, J. Mater. Sci. 38 (2003) 4125-4128. https://doi.org/10.1023/A:1026321404286
[22] P. Peng, G. Liao, T. Shi, Z. Tang, Y. Gao, Molecular dynamic simulations of nanoindentation in aluminum thin film on silicon substrate, Appl. Surf. Sci. 256 (2010) 6284-6290. https://doi.org/10.1016/j.apsusc.2010.04.005
[23] S.W. Han, H.W. Lee, H.J. Lee, J.Y. Kim, J.H. Kim, C.S. Oh, S.H. Choa, Mechanical properties of Au thin film for application in MEMS/NENS using microtensile test. Curr. Appl. Phys. 6S1 (2006) e81-e85.