Environmental Detoxification Using Carbonaceous Composites


Environmental Detoxification Using Carbonaceous Composites

P. Senthil Kumar, A. Saravanan

For decades there has been expanding worldwide worry for the general wellbeing impacted by environmental pollution. The arrival of chemical contaminations into the earth introduces a huge swath of issues related with public health. Carbonaceous composites have been broadly considered for all sorts of contaminants expulsion from wastewater because of its phenomenal and tunable properties. The present and potential utilizations of carbon based materials in wastewater treatment incorporate adsorption, photo catalysis, sanitization and membrane separation. The carbonaceous materials such as activated carbons, carbon nanofibers and carbon nanotubes for the most part managed high extraction effectiveness, great selectivity in complex networks and toughness for continuous adsorption/desorption cycles, basically because of high surface territory, compound security, dispersibility in wastewater and, significantly, multi-sort communication.

Environmental Pollution, Carbonaceous Composites, Carbon Nanofibers, Carbon Nanotubes, Water Treatment

Published online 11/20/2018, 26 pages

DOI: http://dx.doi.org/10.21741/9781945291975-8

Part of the book on Carbonaceous Composite Materials

[1] J. Virkutyte, R.S. Varma, V. Jegatheesan. Treatment of micropollutants in water and wastewater. IWA Publishing. London. 2010.
[2] M. Thakur, G. Sharma, T. Ahamad, A.A. Ghfar, D. Pathania, M. Naushad, Efficient photocatalytic degradation of toxic dyes from aqueous environment using gelatin-Zr(IV) phosphate nanocomposite and its antimicrobial activity, Colloids and surfaces. B, Biointerfaces, 157 (2017) 456-463. https://doi.org/10.1016/j.colsurfb.2017.06.018
[3] S.K. Kahlon, G. Sharma, J.M. Julka, A. Kumar, S. Sharma, F.J. Stadler, Impact of heavy metals and nanoparticles on aquatic biota, Environmental Chemistry Letters, (2018) https://doi.org/10.1007/s10311-018-0737-4.
[4] G. Sharma, D. Pathania, M. Naushad, N.C. Kothiyal, Fabrication, characterization and antimicrobial activity of polyaniline Th(IV) tungstomolybdophosphate nanocomposite material: Efficient removal of toxic metal ions from water, Chemical Engineering Journal, 251 (2014) 413-421. https://doi.org/10.1016/j.cej.2014.04.074
[5] N.W.S. Kam, M. O’Connell, J.A. Wisdom, H.J. Dai. Carbon nanotubes as multifunctional biological transporters and near infrared agents for selective cancer cell destruction. Proceedings of the National Academy of Sciences of the United States of America. 102 (2005) 11600-11605. https://doi.org/10.1073/pnas.0502680102
[6] Y.H. Li, Y.M. Zhao, W.B. Hu, I. Ahmad, Y.Q. Zhu, X.J. Peng, Z.K. Luan. Carbon nanotubes – the promising adsorbent in wastewater treatment. Journal of Physics: Conference Series. 61 (2007) 698-702. https://doi.org/10.1088/1742-6596/61/1/140
[7] Y. Patino, E. Diaz, S. Ordonez. Performance of different carbonaceous materials for emerging pollutants adsorption. Chemosphere. 119 (2015) S124-S130. https://doi.org/10.1016/j.chemosphere.2014.05.025
[8] L. Zhang, F. Pan, X. Liu, L. Yang, X. Jiang, J. Yang, W. Shi. Multi-walled carbon nanotubes as sorbent for recovery of endocrine disrupting compound-bisphenol F from wastewater. Chemical Engineering Journal. 218 (2013) 238-246. https://doi.org/10.1016/j.cej.2012.12.046
[9] J.M. Dias, M.C.M. Alvim-Ferraz, M.F. Almeida. Waste materials for activated carbon preparation and its use in aqueous-phase treatment: A review. Journal of Environmental Management. 85 (2007) 833-846. https://doi.org/10.1016/j.jenvman.2007.07.031
[10] J.L. Figueiredo, C. Bernardo, R.T.K. Baker, K.J. Huttinger, Carbon fibers filaments and composites. Kluwer academic publishers. Amsterdam. 1990. https://doi.org/10.1007/978-94-015-6847-0
[11] V. A. Likholobov, V.B. Fenelonov, L.G. Okkel, O.V. Goncharova, L.B. Avdeeva, V.I. Zaikovskii, G.G. Kuvshinov, V.A. Semikolenov, V.K. Duplyakin, O.N. Baklanova, G.V. Plaksin. New carbon-carbonaceous composites for catalysis and adsorption. Reaction kinetics and catalysis letters. 54 (1995) 381-411. https://doi.org/10.1007/BF02071033
[12] P.M. Ajayan. Nanotubes from carbon. Chemical Reviews. 99 (1999) 1787-1800. https://doi.org/10.1021/cr970102g
[13] Y. Hu, O. Shenderova, D. Brenner. Carbon nanostructures: morphologies and properties. Journal of Computational and Theoretical Nanoscience. 4 (2007) 199-221. https://doi.org/10.1166/jctn.2007.2307
[14] J.H. Walther, R. Jaffe, T. Halicioglu, P. Koumoutsakos. Carbonnanotubes in water: Structural characteristics and energetics. Journal of Physical Chemistry B. 105 (2001) 9980–9987. https://doi.org/10.1021/jp011344u
[15] P. Tonui, S. Oseni, G. Sharma, Y. Qingfenq, G.T. Mola, Perovskites Photovoltaic Solar Cells: An Overview of Current Status, Renewable & Sustainable Energy Reviews, 91 (2018) 1025-1044. https://doi.org/10.1016/j.rser.2018.04.069
[16] S.O. Oseni, K. Kaviyarasu, M. Maaza, G. Sharma, G. Pellicane, G.T. Mola, ZnO:CNT assisted charge transport in PTB7:PCBM blend organic solar cell, Journal of Alloys and Compounds, 748 (2018) 216-222. https://doi.org/10.1016/j.jallcom.2018.03.141
[17] J.L. Stevens, A.Y. Huang, H. Peng, I.W. Chiang, V.N. Khabashesku. J.L. Margrave. Sidewall amino-functionalization of single-walled carbon nanotubes through fluorination and subsequent reactions with terminal diamines. Nano Letters. 3 (2003) 331-336. https://doi.org/10.1021/nl025944w
[18] M. Habibizadeh, K. Rostamizadeh, N. Dalali, A. Ramazani. Preparation and characterization of PEGylated multiwall carbon nanotubes as covalently conjugated and non-covalent drug carrier: A comparative study. Materials Science and Engineering: C. 74 (2017) 1-9. https://doi.org/10.1016/j.msec.2016.12.023
[19] Q. Fu, C. Lu, J. Liu. Selective coating of single wall carbon nanotubes with thin SiO2 layer. Nano Letters. 2 (2002) 329-332. https://doi.org/10.1021/nl025513d
[20] B. Peng, M. Locascio, P. Zapol, S. Li, S.L. Mielke, G.C. Schatz, H.D. Espinosa. Measurements of near-ultimate strength for multiwalled carbon nanotubes and irradiation-induced crosslinking improvements. Nature Nanotechnology. 3 (2008) 626-631. https://doi.org/10.1038/nnano.2008.211
[21] S. Kumar, R. Rani, N. Dilbaghi, K. Tankeshwar, K-H. Kim. Carbon nanotubes: a novel material for multifaceted applications in human healthcare. Chemical Society Reviews. 46 (2017) 158-196. https://doi.org/10.1039/C6CS00517A
[22] S. Beg, M. Rizwan, A.M. Sheikh, M.S. Hasnain, K. Anwer, K. Kohli. Advancement in carbon nanotubes: basics, biomedical applications and toxicity. Journal of Pharmacy and Pharmacology. 63 (2011) 141-163. https://doi.org/10.1111/j.2042-7158.2010.01167.x
[23] Z. Liu, K. Chen, C. Davis, S. Sherlock, Q. Cao, X. Chen. H. Dai. Drug delivery with carbon nanotubes for in vivo cancer treatment. Cancer Research. 68 (2008) 6652-6660. https://doi.org/10.1158/0008-5472.CAN-08-1468
[24] M. Vincent, I. de Lazaro, K. Kostarelos. Graphene materials as 2D non-viral gene transfer vector platforms. Gene Therapy. 24 (2017) 123-132. https://doi.org/10.1038/gt.2016.79
[25] C. Nie, Y. Yang, C. Cheng, L. Ma, J. Deng, L. Wang, C. Zhao. Bioinspired and biocompatible carbon nanotube-Ag nanohybrid coatings for robust antibacterial applications. ActaBiomaterialia. 51 (2017) 479-494. https://doi.org/10.1016/j.actbio.2017.01.027
[26] X. Liu, R.H. Hurt, A.B. Kane. Biodurability of single-walled carbon nanotubes depends on surface functionalization. Carbon. 48 (2010) 1961-1969. https://doi.org/10.1016/j.carbon.2010.02.002
[27] X, Huang, Z. Zeng, Z. Fan, J. Liu, H. Zhang. Graphene-based electrodes. Advanced Materials. 24 (2012) 5979-6004.
[28] Q. Xiang, J. Yu, M. Jaroniec. Graphene-based semiconductor photocatalysts. Chemical Society Reviews. 41 (2012) 782-796. https://doi.org/10.1039/C1CS15172J
[29] W. Choi, I. Lahiri, R. Seelaboyina, Y.S. Kang. Synthesis of graphene and its applications: A review. Critical Reviews in Solid State and Material Sciences. 35 (2010) 52-71. https://doi.org/10.1080/10408430903505036
[30] K.C. Kemp, H. Seema, M. Saleh, N.H. Le, K. Mahesh, V. Chandra, K.S. Kim. Environmental applications using graphene composites: water remediation and gas adsorption. Nanoscale. 5 (2013) 3149-3171. https://doi.org/10.1039/c3nr33708a
[31] G. Zhao, L. Jiang, Y. He, J. Li, H. Dong, X. Wang, W. Hu. Sulfonated graphene for persistent aromatic pollutant management. Advanced Materials. 23 (2011) 3959-3963. https://doi.org/10.1002/adma.201101007
[32] Z.-Y. Sui, Y. Cui, J.-H. Zhu, B.-H. Han. Preparation of three-dimensional graphene oxide-polyethylenimine porous materials as dye and gas adsorbents. ACS Applied Materials and Interfaces. 5 (2013) 9172-9179. https://doi.org/10.1021/am402661t
[33] J. Liang, Z. Cai, L. Li, L. Guo, J. Geng. Scalable and facile preparation of graphene aerogel for air purification. RSC Advances. 4 (2014) 4843-4847. https://doi.org/10.1039/c3ra45147j
[34] O. Jost, A. Gorbunov, X.J. Liu, W. Pompe, J. Fink. Single walled carbon nanotube diameter. Journal of Nanoscience and Nanotechnology. 4 (2004) 61-102. https://doi.org/10.1166/jnn.2004.071
[35] P.Keblinski, S.K. Nayak, P. Zapol, P.M. Ajayan, Chargedistribution and stability of charged carbon nanotubes. Physical Review Letters89 (2002) 255503. https://doi.org/10.1103/PhysRevLett.89.255503
[36] S. Furmaniak, A.P. Terzyk, P.A. Gauden, G. Rychlicki, Simple models of adsorption in nanotubes. Journal of Colloid and Interface Science. 295 (2006) 310–317. https://doi.org/10.1016/j.jcis.2005.12.032
[37] J.H. Walther, R.L. Jaffe, E.M. Kotsalis, T. Werder, T. Halicioglu, P. Koumoutsakos, Hydrophobic hydration of C-60 and carbon nanotubes in water. Carbon. 42 (2004) 1185–1194. https://doi.org/10.1016/j.carbon.2003.12.071
[38] H.T. Ham, Y.S. Choi, I.J. Chung. An explanation of dispersion states of single-walled carbon nanotubes in solvents andaqueous surfactant solutions using solubility parameters. Journal of Colloid and Interface Science.286 (2005) 216–223. https://doi.org/10.1016/j.jcis.2005.01.002
[39] P. Avouris. Carbon nanotube electronics. Chemical Physics. 281 (2002) 429–445. https://doi.org/10.1016/S0301-0104(02)00376-2
[40] P.V. Kamat, M. Haria, S. Hotchandani, C60 Cluster as an electron shuttle in a RuII)-polypyridyl sensitizer-based photochemicalsolar cell. The Journal of Physical Chemistry B.108 (2004) 5166–5170. https://doi.org/10.1021/jp0496699
[41] R.M. Allen-King, P. Grathwohl, W.P. Ball. New modelling paradigms for the sorption of hydrophobic organic chemicalsto heterogeneous carbonaceous matter in soils, sediments,and rocks. Advances in Water Resources.25 (2002) 985–1016. https://doi.org/10.1016/S0309-1708(02)00045-3
[42] M. Naushad, G. Sharma, A. Kumar, S. Sharma, A.A. Ghfar, A. Bhatnagar, F.J. Stadler, M.R. Khan, Efficient removal of toxic phosphate anions from aqueous environment using pectin based quaternary amino anion exchanger, International journal of biological macromolecules, 106 (2018) 1-10. https://doi.org/10.1016/j.ijbiomac.2017.07.169
[43] R. Bushra, M. Naushad, G. Sharma, A. Azam, Z.A. Alothman, Synthesis of polyaniline based composite material and its analytical applications for the removal of highly toxic Hg2+ metal ion: Antibacterial activity against E. coli, Korean Journal of Chemical Engineering, 34 (2017) 1970-1979. https://doi.org/10.1007/s11814-017-0076-3
[44] G. Sharma, M. Naushad, A. Kumar, S. Rana, S. Sharma, A. Bhatnagar, F. J. Stadler, A.A. Ghfar, M.R. Khan, Efficient removal of coomassie brilliant blue R-250 dye using starch/poly(alginic acid- cl -acrylamide) nanohydrogel, Process Safety and Environmental Protection, 109 (2017) 301-310. https://doi.org/10.1016/j.psep.2017.04.011
[45] C.S. Lu, Y.L. Chung, K.F. Chang. Adsorption of trihalomethanesfrom water with carbon nanotubes. Water Research.39 (2005) 1183–1189. https://doi.org/10.1016/j.watres.2004.12.033
[46] G. Sharma, M. Naushad, A.a.H. Al-Muhtaseb, A. Kumar, M.R. Khan, S. Kalia, Shweta, M. Bala, A. Sharma, Fabrication and characterization of chitosan-crosslinked-poly(alginic acid) nanohydrogel for adsorptive removal of Cr(VI) metal ion from aqueous medium, International journal of biological macromolecules, 95 (2017) 484-493. https://doi.org/10.1016/j.ijbiomac.2016.11.072
[47] G. Sharma, A. Kumar, C. Chauhan, A. Okram, S. Sharma, D. Pathania, S. Kalia, Pectin-crosslinked -guar gum/SPION nanocomposite hydrogel for adsorption of m-cresol and o-chlorophenol, Sustainable Chemistry and Pharmacy, 6 (2017) 96-106. https://doi.org/10.1016/j.scp.2017.10.003
[48] V.K. Gupta, D. Pathania, N.C. Kothiyal, G. Sharma, Polyaniline zirconium (IV) silicophosphate nanocomposite for remediation of methylene blue dye from waste water, Journal of Molecular Liquids, 190 (2014) 139-145. https://doi.org/10.1016/j.molliq.2013.10.027
[49] M. Naushad, Z.A. Alothman, G. Sharma, Inamuddin, Kinetics, isotherm and thermodynamic investigations for the adsorption of Co(II) ion onto crystal violet modified amberlite IR-120 resin, Ionics, 21 (2014) 1453-1459. https://doi.org/10.1007/s11581-014-1292-z
[50] K. Yang, X.L. Wang, L.Z. Zhu, B.S. Xing. Competitive sorption of pyrene, phenanthrene, and naphthalene on multiwalledcarbon nanotubes. Environmental Science and Technology. 40 (2006) 5804–5810. https://doi.org/10.1021/es061081n
[51] V.K. Gupta, D. Pathania, M. Asif, G. Sharma, Liquid phase synthesis of pectin–cadmium sulfide nanocomposite and its photocatalytic and antibacterial activity, Journal of Molecular Liquids, 196 (2014) 107-112. https://doi.org/10.1016/j.molliq.2014.03.021
[52] M.I. Ahamed, Inamuddin, Lutfullah, G. Sharma, A. Khan, A.M. Asiri, Turmeric/polyvinyl alcohol Th(IV) phosphate electrospun fibers: Synthesis, characterization and antimicrobial studies, Journal of the Taiwan Institute of Chemical Engineers, 68 (2016) 407-414. https://doi.org/10.1016/j.jtice.2016.08.024
[53] G. Sharma, A. Kumar, M. Naushad, D. Pathania, M. Sillanpää, Polyacrylamide@Zr(IV) vanadophosphate nanocomposite: Ion exchange properties, antibacterial activity, and photocatalytic behavior, Journal of Industrial and Engineering Chemistry, 33 (2016) 201-208. https://doi.org/10.1016/j.jiec.2015.10.011