Bioceramics, Carbonaceous Composite and its Biomedical Applications


Bioceramics, Carbonaceous Composite and its Biomedical Applications

Sheeba Nuzhat Khan, Fazal-Ur-Rehman

Biomaterial is a material that interacts with human tissue and body fluids to treat, improve, or replace anatomical element(s) of the human body. Biological materials such as human bone allograft, are considered to be biomaterials and they are used in many cases in orthopedic surgery. Due to compatibility of carbonaceous materials with bone and other tissue and the similarity of the mechanical properties of carbon to bone, carbonaceous composite is used for orthopedic implants. Nowadays, to obtain the most desirable clinical performance of the implants the mechanically superior metals are combined with ceramics and polymers of excellent biocompatibility and biofunctionality. Among ceramic/ceramic, ceramic/polymer and ceramic/metal composites, ceramic/ceramic composites enjoy superiority due to their similarity with bone minerals, exhibiting biocompatibility and ability to be shaped into a definite size. Among bioceramics alumina, ziconia and carbon revealed their blood compatibility, no tissue reaction and nontoxicity to cells, but none of the above three-bioinert ceramics exhibited bonding with the bone. However, this bioactivity of the bioinert ceramics can be achieved by forming composites with bioactive ceramics. Bioglass and glass ceramics are nontoxic and chemically bond to bone, elicit osteoinductive property. Calcium phosphate ceramics are nontoxic to tissues, and have bioresorption and osteoinductive property.

Ceramic, Polymer, Carbonaceous Composites, Metal Composites, Alumina, Tissues

Published online 11/20/2018, 34 pages


Part of the book on Carbonaceous Composite Materials

[1] B.D. Ratner , A.S. Hoffman , F.J. Schoen Biomaterials science. An introduction to materials in medicine. In Elsevier/Academic Press 2nd edn. 2004 Amsterdam, the Netherlands/New York, NY: Elsevier/Academic Press.
[2] J. Black. Biological performance of tantalum, Clin Materials, 16 (1994) 167-173.
[3] Steven M. Kurtz. The UHMWPE handbook: ultra-high molecular weight polyethylene in total joint replacement (2004), Academic Press. ISBN 978-0-12-429851-4. Retrieved 19 September 2011.
[4] J.D. Bobyn, G. Stackpool, K.K Toh, et. al. Bone in growth characteristics and interface mechanics of a new porous tantalum biomaterial, Journal of Bone Joint Surgery, 81-B (1999) 907-914.
[5] J.D. Bobyn, S.A. Hacking, S.P Chan, et. al. Characterization of a new porous tantalum biomaterial for reconstructive orthopaedics. Scientific Exhibit, Proc of AAOS, Anaheim CA, (1999).
[6] J.J. Krygier, J.D. Bobyn, R.A. Poggie, et. al. Mechanical characterization of a new porous tantalum biomaterial for orthopaedic reconstruction. Proc SIROT. Sydney, Australia, (1999).
[7] Hench, L. Larry. “Bioceramics: From Concept to Clinic”. Journal of the American Ceramic Society 74 (1991) 1487.
[8] T. Yamamuro, L.L. Hench, J. Wilson. CRC Handbook of bioactive ceramics vol ii (1990).
[9] Kassinger, Ruth. Ceramics: From Magic Pots to Man-Made Bones. Brookfield, CT: Twenty- First Century Books, (2003).
[10] J.F. Shackelford (editor) MSF bioceramics applications of ceramic and glass materials in medicine (1999).
[11] H. Oonishi, H. Aoki, K. Sawai (editors) Bioceramics vol. 1(1988).
[12] P. Ducheyne, G.W. Hastings (editors) CRC metal and ceramic biomaterials vol1(1984).
[13] De Jong, W. F., Le, substance minerale dans le os, Recueil des Travaux Chimiques des pays, 45 (1926) 445-450.
[14] A. S. Posner, Crystal chemistry of bone mineral. Physiology Review, 49 (1969) 760–792.
[15] I.M. Kay, R.A. Young, A.S. Posner, Crystal structure of hydroxyapatite, Nature, 204 (1964) 1050–1052.
[16] H.A. Benghurri, P.K. Bajpai, “Sustained Release of Steroid Hormones from Polylactic acid or Polycaprolactone-Impregnated Ceramics”, pp 93-110 in Handbook of Bioactive Ceramics. Vol 11, Calcium Phosphate and Hydroxylapatite Ceramics Edited by T. Yarnamuro, L.L. Hench, and J Wilson CRC Press, Boca Raton, FL. (1990).
[17] L.L. Hench, “Bioactive Ceramics”, p. 54 in 610- ceramics’ Materials Characteristics Versus In Vivo Behavior. Vol. 523 Edited by P Ducheyne and J Lemons Annals of New York Academy of Sciences, New York, 1988.
[18] U. Gross, R. Kinne. H.J. Schmitr, V. Strunz, “The Response of Bone to Surface Active Glass/Glass-Ceramics,” RC Critical Reviews in Biocompatibility, 4 (1988) 155-179.
[19] M. Wang, “Developing Bio-stable and Biodegradable Composites for Tissue Replacement and Tissue Regeneration”, Materials Research Society Symposium 724: Biological and Biomimetic Materials – Properties to Function, San Francisco, USA, 2002.
[20] W. Bonfield, M.D. Grynpas, A.E. Tully, J. Bowman, J. Abram, “Hydroxyapatite Reinforced Polyethylene – A Mechanically Compatible Implant Material for Bone Replacement”, Biomaterials, 2 (1981) 185-186.
[21] L.L. Hench, The story of bioglass, Journal of Materials Science: Materials in Medicine, 17 (2006) 967-978.
[22] L.L. Hench, R.J. Splinter, T.K. Greenlee, W. C. Allen, Bonding mechanisms at the interface of ceramic prosthetic materials, Journal of Biomedical Materials Research, 2 (1971) 117-141.
[23] Jr. Greenlee, T. K. Beckham, C. A. Crebo, A.R. Jr., J.C.Malmborg, Glass ceramic bone implants, Journal of Biomedical Materials Research, 6 (1972) 235-244.
[24] L.L. Hench, H.A. Paschall, Direct chemical bonding of bioactive glass-ceramic materials and bone, Journal of Biomedical Materials Research, 4 (1973) 25-42.
[25] C.G. Pantano Jr., A.E. Clark Jr., L.L. Hench, Multilayer corrosion films on glass surfaces, Journal of the American Ceramic Society, 57 (1974) 412–413.
[26] M. Ogino, L.L. Hench, Formation of calcium phosphate films on silicate glasses, Journal Non-Crystalline Solids, 38-39 (1980) 673-678.
[27] L.L. Hench, Bioceramics: from concept to clinic, Journal of the American Ceramic Society, 74 (1991) 1487-1510.
[28] L.L. Hench, J.K. West, Biological applications of bioactive glasses, Life Chemistry Reports, 13 (1996) 187-241.
[29] J. Wilson, S.B. Low, Bioactive ceramics for periodontal treatment: comparative studies, Journal of Applied Biomaterials, 3 (1992) 123-129.

[30] H. Oonishi, S. Kutrshitani, E. Yasukawa, H. Iwaki, L.L. Hench, J. Wilson, E. Tsuji, T. Sugihara, Particulate bioglass compared with hydroxyapatite as a bone graft substitute, Clinical Orthopaedics and Related Research, 334 (1997) 316–325.
[31] H. Oonishi, L.L. Hench, J. Wilson, F. Sugihara, E. Tsuji, S. Kushitani and H. Iwaki, Comparative bone growth behaviour in granules of bioceramic materials of various sizes. Journal of Biomedical Materials Research, 44 (1999) 31-43.<31::AID-JBM4>3.0.CO;2-9
[32] T. Kokubo, M. Shigematsu, Y. Nagashima, M. Tashiro, T. Nakamura, T. Yamamuro and S. Higashi, Apatite- and Wollastonite-containing glass ceramics for prosthetic applications. Bulletin of the Institute for Chemical Research, 60. Kyoto University, (1982) 260-268.
[33] N. Ikeda, K. Kawanabe, T. Nakamura, Quantitative comparison of osteoconduction of porous, dense A-W glass-ceramic and hydroxyapatite granules (effects of granule and pore sizes). Biomaterials, 20 (1999) 1087–1095.
[34] T. Kokubo, A/W glass-ceramic: processing and properties. In AnIntroduction to Bioceramics, ed. L. L. Hench and J. Wilson. World ScientificPublishing Co. Pte. Ltd., Singapore, (1993) pp. 75–88.
[35] T. Kokubo, H.M. Kim, M. Kawashita, and T. Nakamura, What kinds of materials exhibit bone-bonding? In Bone Engineering, ed. J. E. Davies. Em Squared Incorporated, Toronto, (2000) pp. 190–194.
[36] T. Kokubo, S. Ito, Z.T. Huang, T. Hayashi, S. Sakka, T. Kitsugi, T. Yamamuro, Ca, P-rich layer formed on high-strength bioactive glassceramic A-W. Journal of Biomedical Materterials Research banner, 24, (1990) 331-343.
[37] T. Kokubo, S. Ito, M. Shigematsu, S. Sakka, T. Yamamuro, Mechanical properties of a newtype of apatite-containing glass-ceramic for prosthetic application, Journal of Materials Science, 20 (1985) 2001-2004.
[38] T. Yamamuro, A/W glass ceramic for clinical applications. In An Introduction to Bioceramics, ed. L. L. Hench and J. Wilson. World Scientific Publishing Co. Pte. Ltd., Singapore, (1993) pp. 8-–104.

[39] K. de Groot, R. Le Geros, “Significance of Porosity and Physical Chemistry of Calcium Phosphate Ceramics”, in Bioceramics Material Characteristics Versus InVivo Behavior, Vol 523. Edited by P Ducheyne and J Lemons Annals of New York Academy of Sciences, New York (1988) pp 268-77.
[40] J. C. Bokros, W.H. Ellis, U.S. Pat No 3526005 Method of preparing an intravascular defect by implanting a pyrolytic carbon coated prosthesis, 1971
[41] J. C. Bokros, Carbon Biomedical Devices, Carbon, 15 (1977) 355-371.
[42] A. Haubold, H.S. Shim, and J. C. Bokros, “Carbon in Medical Devices”, in Biocompatibiiity ofClinicai lmplant Materials, Vol /I CRC Press, Boca Raton, FL, (1981) pp 3-42
[43] J. D. Bokros, Carbon Biomedical Devices, Carbon, 18 (1977) 355-71.
[44] A. D. Haubold, R A. Yapp. and J D. Bokros, “Carbons”, in Concise Encyclopedia of Medical and Dental Materiais Edited by DWilliams Pergainon Press, New York. 1990 pp 95-101
[45] P. Ducheyne, L. L. Hench. A. Kagan, M. Martens, A. Burssens, J.C. Muller, The Effect of Hydroxyapatite Impregnation of Skeletal Bonding of Porous Coated Implants, Journal of Biomedical Materials Research, 14 (1980) 225-137.
[46] C. Aparicioa, F.J. Gil, C. Fonseca, M. Barbosa, J.A. Planell, Corrosion behavior of commercially pure Ti shot blasted with different materials and sizes of shot particles for dental implant applications, Biomaterials, 24 (2003) 263-273.
[47] M. Papakyriacou, H. Mayer, C. Pypen, H. Plenk Jr, S. Stanzl-Tschegg, Effects of surface treatments on high cycle corrosion fatigue of metallic implant materials, International Journal of Fatigue., 22 (2000) 873-886.
[48] B. Tritschler, B. Forest, J. Rieu, Fretting corrosion of materials for orthopaedic implants: a study of a metal/polymer contact in an artificial physiological medium, Tribology International, 32 (1999) 587-596.
[49] S. Kumar, T.S.N.S Narayanan, S.G.S Raman, S.K. Seshadri, Evaluation of fretting corrosion behaviour of CP-Ti for orthopaedic implant applications, Tribology International, 43 (2010) 1245- 1252.
[50] M. Aziz-Kerrzo, K.G. Conroy, A.M. Fenelon, S.T. Farrell, C.B. Breslin, Electrochemical studies on the stability and corrosion resistance of Ti-based implant materials, Biomaterials, 22 (2001) 1531-1539.
[51] T. Akahori, M. Niinomi, Fracture characteristics of fatigued Ti6Al4V ELI as an implant material, Materials science & engineering. A, Structural materials: properties, microstructure and processing, 243 (1998) 237-243.
[52] M. Karla, J.R. Kelly, Influence of loading frequency on implant failure under cyclic fatigue conditions, Dental Materials, 25 (2009) 1426-1432.
[53] C.K. Lee, M. Karl, J.R. Kelly, Evaluation of test protocol variables for dental implant fatigue research, Dental Materials, 25 (2009) 1419-1425.
[54] P.A. Dearnley, K.L. Dahma, H. Çimenoglu, The corrosion–wear behaviour of thermally oxidised CP-Ti and Ti6Al4V. Wear, 256 (2004) 469.
[55] M.K. Harman, S.A. Banks, W.A. Hodge, Wear analysis of a retrieved hip implant with titanium nitride coating, The Journal of Arthroplasty,12 (1997) 938.
[56] S. Spriano, E. Vernè, M.G. Faga, S. Bugliosi, G. Maina, Surface treatment on an implant cobalt alloy for high biocompatibility and wear resistance, Wear, 259 (2005) 919-925.
[57] T. Hanawa, Metal ion release from metal implants, Materials Science and Engineering C, 24 (2204) 745-752.
[58] Y. Okazaki, E. Gotoh, Metal release from stainless steel, Co-Cr-Mo-Ni-Fe and Ni-Ti alloys in vascular implants, Corrosion Science50 (2008) 3429-3438.

[59] F. Ferrari, A. Miotello, L. Pavloski, E. Galvanetto, G. Moschini, S. Galassini, P. Passi, S. Bogdanovie, S. Fazini, M. Jaksi, V. Valkovi, Metal-ion release. From Ti and TiN coated implants in rat bone, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 79 (1993) 421-423.
[60] M. Browne, P.J. Gregson, Effect of mechanical surface pretreatment on metal ion release, Biomaterials, 21 (2000)385-392.