Carbon Based Nanomaterials for Energy Storage

$20.00

Carbon Based Nanomaterials for Energy Storage

P. Senthil Kumar, K. Grace Pavithra, S. Ramalingam

In order to store or transfer energy researchers have been focusing on solid state batteries, flow batteries, flywheels, compressed air energy storage, thermal and pumped hydropower. In recently nanomaterials have attracted attention in the field of energy storage due to its fast recharging capability, better durability, and high storage capacity. The smallest size and high surface area per unit volume or mass make nanomaterials unique in showing electric, magnetic, optical, structural, mechanical and chemical characteristics. This chapter discusses current status and future development trends of carbon nanomaterials in the field of energy storage systems.

Keywords
Non-Renewable, Nanomaterial, Recharging Capability, Physicochemical Properties, Energy Storage

Published online 11/20/2018, 24 pages

DOI: http://dx.doi.org/10.21741/9781945291975-2

Part of the book on Carbonaceous Composite Materials

References
[1] L. Dai, D.W. Chang, J. BeomBaek, W. Lu, Carbon Nanomaterials for Advanced Energy Conversion and Storage, Sci, 8 (2012) 1130-1166.
[2] J.Gibbs, A.A. Pesaran, P.S. Sklad, L.D. Marlino, In Fundamentals of Materials for Energy and Environ. Sustain.in: D.S. Ginley, D. Cahen (Eds.), Cambridge Univ. Press., 2012, pp. 426-444.
[3] R. aito,M.S. Dresselhaus, Optical Properties of Carbon Nanotubes, in Carbon Nanotubes and Graphene, K.T. Iijima (Eds.), Elsevier: Oxford., 2014, pp. 77-98.
[4] Uriani, A.R. Dalila, A. Mohamed, M.H. Mamat, M.Salina, M.S. Rosmi, J.Rosly, R.MdNor, Vertically aligned carbonnanotubes synthesized from waste chicken fat, Mater. Lett. 101 (2013) 61-64. https://doi.org/10.1016/j.matlet.2013.03.075
[5] Suriani, R. Mdnor, M. Rusop, Vertically aligned carbon nanotubes synthesized from waste cooking palm oil, J. Ceram. Soc. Jpn.118 (1382) (2010) 963-968. https://doi.org/10.2109/jcersj2.118.963
[6] W. Kratschmer, The story of making fullerenes, Nanoscale, 3 (2011) 2485-9. https://doi.org/10.1039/c0nr00925c
[7] N. Aich, J. Plaza-Tuttle, J.R. Lead, N.B. Saleh N B, A critical review of nanohybrids: synthesis, applications and environmental implications, Environ. Chem. 11 (2014) 609-23. https://doi.org/10.1071/EN14127
[8] N.B. Sleh, N. Aich N, J. Plaza-Tuttle, T. Sabo-Attwood, Research strategy to determine when novel nanohybrides pose unique environmental risks, Environ. Sci. Nano. 2 (2015) 11-18. https://doi.org/10.1039/C4EN00104D
[9] D. Vukicevic, M. Randic, On kekule structures of buckminsterfullerence, Chem. Phy. Letters. 401 (2005) 446-50. https://doi.org/10.1016/j.cplett.2004.11.098
[10] A.D. Franklin, Electronics: The road to carbon nanotube transistors, Nature 498(7455) (2013) 443-444. https://doi.org/10.1038/498443a
[11] C. Fisher, A.E. Rider, Z.J. Han, S. Kumar, I. Levchenko, K. Ostrikov, Applications and nanotoxicity of carbon nanotubes and graphene in biomedicine, J.Nano. mater. 2012 (2012) 3. https://doi.org/10.1155/2012/315185
[12] Y. Fan, Q. Zhang, C. Lu, Q. Xiao, X. Wang, B. kangTay, High performance carbon nanotube–Si core–shell wires with a rationally structured core for lithium ion battery anodes, Nanoscale 5(4) (2013) 1503-1506. https://doi.org/10.1039/c3nr33683b
[13] Q. Zhang, J.Q. Huang, W.Z. Qian, Y.Y. Zhang, F. Wei, The road for nanomaterials industry: A review of carbon nanotube production, post-treatment, and bulk applications for composites and energy storage, Small 9(8) (2013) 1237-1265. https://doi.org/10.1002/smll.201203252
[14] k. anagi, Differentiation of Carbon Nanotubes with Different Chirality, in Carbon Nanotubes and Graphene, K.T. Iijima (Eds.), Elsevier: Oxford., 2014, 19-38.
[15] Y.H. Lu, Z.X. Lu, Mechanical Properties of Carbon Nanotubes and Graphene, in Carbon Nanotubes and Graphene, K.T. Iijima(Eds.), Elsevier: Oxford., 2014,165-200.
[16] R. aito, M.S. Dresselhaus, Optical Properties of Carbon Nanotubes, in Carbon Nanotubes and Graphene, K.T. Iijima (Eds.), Elsevier: Oxford., 2014, 77-98.
[17] L.W. Fan, Z.Q. Zhu, Y. Zeng, Q. Lu, Z.T. Yu, Heat transfer during melting of graphene based composite phase change materials heated from below, Int. J. Heat Mass Transfer 79 (2014) 94–104. https://doi.org/10.1016/j.ijheatmasstransfer.2014.08.001
[18] P. Zhang, X. Xiao, Z.W. Ma, A review of the composite phase change materials: Fabrication, characterization, mathematical modeling and application to performance enhancement, Appl. Energy 165 (2016) 472–510. https://doi.org/10.1016/j.apenergy.2015.12.043
[19] A.A. Al-Abidi, S. Mat, K. Sopian, M.Y. Sulaiman, A.T. Mohammad, Internal and external fin heat transfer enhancement technique for latent heat thermal energy storage in triplex tube heat exchangers, Appl. Therm. Eng. 53 (1) (2013) 147–156. https://doi.org/10.1016/j.applthermaleng.2013.01.011
[20] Y. hu, S. Murali, W. Cai, X. Li, J.W. Suk, J.R.Potts, R.S. Ruoff, Graphene and graphene oxide: synthesis, properties, and applications, Adv. Mater. 22(35) (2010) 3906-3924. https://doi.org/10.1002/adma.201001068
[21] P. vouris, C. Dimitrakopoulos, Graphene: synthesis and applications. Mater. Today. 15(3) (2012) 86-97. https://doi.org/10.1016/S1369-7021(12)70044-5
[22] D.S.L. bergel, V. Apalkov, J. Berashevich, K.Ziegler, T. Chakraborty, Properties of graphene: atheoretical perspective, Adv. Phys. 59(4) (2010) 261-482.
[23] T. Denaro, V. Baglio, M. Girolamo, V. Antonucci, A. S. Arico, F. Matteucci, R. Ornelas, Investigation of low cost carbonaceous materials for application as counter electrode in dye-sensitized solar cells, J. Appl. Electrochem.39 (2009)2173–2179. https://doi.org/10.1007/s10800-009-9841-2
[24] P. Avouris, C. Dimitrakopoulos, Graphene: synthesis and applications. Mater. Today. 15(3) (2012)86-97. https://doi.org/10.1016/S1369-7021(12)70044-5
[25] A.A. alandin, Thermal properties of grapheneand nanostructured carbon materials. Nat. Mater. 10(8) (2011) 569-581. https://doi.org/10.1038/nmat3064
[26] K.E. Whitener, P.E. Sheehan, Graphene synthesis. Diamond Relat. Mater. 46 (2014) 25-34. https://doi.org/10.1016/j.diamond.2014.04.006
[27] Z. Xiang, Q. Dai, J. Chen, L. Dai, Edge functionalization of graphene and two-dimensional covalent otganic polymers for energy conversion and storage, Adv. Mater. 28 (2016) 6253-6261. https://doi.org/10.1002/adma.201505788
[28] Z. Xing, X. Luo, Y. Qi, W.F. Stickle, K. Amine,, J. Lu, X. Ji, Nitrogen-doped nanoporous graphenic carbon: An efficient conducting support for O2 cathode, Chem. Nano. Mat. 2 (2016) 692-697. https://doi.org/10.1002/cnma.201600112
[29] M. Mirzaeian, P.J. Hall, Preparation of controlled porosity carbon aerogels for enrgy storage in recgargeable lithium oxygen batteries, Electrochimica. Acta. 54(28) (2009) 7444-7451. https://doi.org/10.1016/j.electacta.2009.07.079
[30] C.H.J. Kim, D. Zhao, G. Lee, J.Liu, Strong, machinable carbon aerogels for high performance supercapacitors, Adv. Mater. 26(27) (2016) 4976-4983.
[31] Y.F. Ma, Y.S. Chen, Three-dimensional graphene networks: synthesis, properties and applications. Natl. Sci. Rev. 2 (2015) 40-53. https://doi.org/10.1093/nsr/nwu072
[32] X.H. Cao, Z.Y. Yin, H. Zhang, Three-dimensional graphene materials: preparation, structures and application in supercapacitors, Energy. Environ. Sci. 7 (2014) 1850-65 https://doi.org/10.1039/C4EE00050A
[33] Z.P. Chen, W.C. Ren, L.B. Gao, B.L. Liu, S.F. Pei, H.M. Cheng, Three-dimensional flexible andconductive interconnected graphene networks grown by chemical vapour deposition. Nat. Mater. 10 (2011) 424-8. https://doi.org/10.1038/nmat3001
[34] M. Zhou, T.Q. Lin, F.Q. Huang, Y.J. Zhong, Z. Wang, Y.F. Tang, Highly conductive porous graphene/ceramic composites for heat transfer and thermal energy storage, Adv. Funct. Mater. 23 (2013)2263-9. https://doi.org/10.1002/adfm.201202638
[35] W. Wei, S.B. Yang, H.X. Zhou, I. Lieberwirth, X.L. Feng., K. Müllen, 3D graphene foams cross-linked with pre-encapsulated Fe3O4nanospheresfor enhanced lithium storage. Adv. Mater. 25 (2013) 2909-14. https://doi.org/10.1002/adma.201300445
[36] W. Lu, L. Qu, K. Henry and L. Dai, Capacitive performance of ordered mesoporous carbons with tunable porous texture in ionic liquid electrolytes, J. Power Sources. 189 (2009) 1270–1277. https://doi.org/10.1016/j.jpowsour.2009.01.009
[37] H. Zhang, G. Cao, Z. Wang, Y. Yang, Z. Shi and Z. Gu, Vertically-Aligned Carbon Nanotubes for Electrochemical Energy Conversion and Storage, Nano.
[38] W. Lu, L. Qu, L. Dai and K. Henry, Electrochemistry of Novel Electrode Materials for Energy Conversion and Storage, ECS Trans. 6 (2008) 257– 261.
[39] K. Geim, Graphene: Status and Prospects, Science, 324 (2009) 1530–1534. https://doi.org/10.1126/science.1158877
[40] C.Fisher, A.E. Ridetr, Z.J.Han, S. Kumar, I. Levchenko, K. Ostrikov, Applications and nanotixicity of carbon nanotubes and graphene in biomedicine, J. Nanomater.(2012) 3.
[41] J. N. Coleman, M. Lotya, A. O’Neill, S. D. Bergin, P. J. King, U. Khan, K. Young, A. Gaucher, S. De and R. J. Smith, Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials, Sci. 331 (2011) 568–571. https://doi.org/10.1126/science.1194975
[42] J.P. Alper, M. Vincent, C. Carraro, R. Maboudian, Siliconcarbidecoatedsi- licon nanowiresasrobustelectrodematerialforaqueousmicro-supercapacitor, Appl. Phys. Lett. 100 (2012) 1639-01.
[43] J.P. Alper, S. Wang, F. Rossi, G. Salviati, N. Yiu, C. Carraro,R. Maboudian, Selective ultra thin carbons heath on porous silicon nanowires:materials for extremely high energy density planar micro-supercapacitors.NanoLett.14 (2014) 1843–1847. https://doi.org/10.1021/nl404609a
[44] N. Berton, M. Brachet, F. Thissandier, J. LeBideau, P. Gentile, G. Bidan, T. Brousse, S. Sadki,Wide voltage window silicon nano wire electrodes from microsupercapacitors via electrochemical surface oxidation in ionic liquid electrolyte. Electro. chem. Commun.41 (2014) 31–34. https://doi.org/10.1016/j.elecom.2014.01.010
[45] S. Boukhalfa, K. Evanoff, G. Yushin, Atomic layerd deposition of vanadium oxide on carbon nanotubes for high power super capacitor electrodes, EnergyEnviron.Sci.5 (2012) 6872–6879. https://doi.org/10.1039/c2ee21110f
[46] T. Takamura, R.J. Brodd, New Carbon Based Materials for Electrochemical Energy Storage Systems, I.V. Barsukov et al. (eds.), Springer., (2006) 157–169.
[47] P.G. Bruce, B. Scrosati, J. Tarascon, Angew,Nanomaterials for Rechargeable Lithium Batteries, Chem. Int. Ed. 47 (2008) 2930 – 2946.
[48] D. Sen, R. Thapa, K.K. Chattopadhyay, Small Pd cluster adsorbed double vacancy defect graphene sheet for hydrogen storage: A first‐principles study. Int. J. HydrogenEnergy. 38 (2013) 3041–3049. https://doi.org/10.1016/j.ijhydene.2012.12.113
[49] Y. Wang, J.H. Liu, K. Wang, T. Chen, X. Tan, C.M. Li, Hydrogen storage in Ni‐B nanoalloy‐doped 2D graphene. Int. J. Hydrogen Energy.36(2011) 12950–12954. https://doi.org/10.1016/j.ijhydene.2011.07.034
[50] M. Zhou, Y.H. Lu, C. Zhang, Y.P. Feng, Strain effects on hydrogen storage capabilityof metal‐decorated graphene: A first‐principles study, Appl. Phys. Lett. 97 (2010) 103109–103111. https://doi.org/10.1063/1.3486682
[51] Y.F. Zhao, Y.H. Kim, L.J. Simpson, A.C. Dillon, S.H. Wei, M.J. Heben, Opening space for H2 storage: Cointercalation of graphite with lithium and small organic molecules, Phys. Rev. B.78 (2008) 144102–144106. https://doi.org/10.1103/PhysRevB.78.144102
[52] C. Ataca, E. Akturk, S. Ciraci, H. Ustunel, High‐capacity hydrogen storage by metalized Graphene, Appl. Phys. Lett. 93 (2008) 043123–043125. https://doi.org/10.1063/1.2963976
[53] T. Hussain, B. Pathak, T.A. Maark, C.M. Araujo, R.H. Scheicher, R. Ahuja, Initio study of lithium‐doped graphane for hydrogen storage. EPL. 96 (2011) 27013–27016. https://doi.org/10.1209/0295-5075/96/27013
[54] J. ang, A. Sudik, C. Wolverton, D.J. Siegel, High capacity hydrogen storage materials: attributes for automotive applications and techniques for materials discovery, Chem. Soc. Rev. 39(2010) 656–675. https://doi.org/10.1039/B802882F
[55] Paster, M. D. et al. Hydrogen storage technology options for fuel cell vehicles: well-to-wheel costs, energy efficiencies, and greenhouse gas emissions. Int. J. Hydrogen Energy, 36(2011)14534–14551. https://doi.org/10.1016/j.ijhydene.2011.07.056
[56] S. Barman, P. Sen, G. P. Das, Ti-decorated doped silicon fullerence: a possible hydrogen-storage material, J. Phy. Chem C. 112 (2008) 19963-8.
[57] J. L. Li, Z. S. Hu, G. W. Yang, High-capacity hydrogen storage of magnesium decorated boron fullerence, Chem. Phy. 392 (2012) 16 – 20. https://doi.org/10.1016/j.chemphys.2011.08.017
[58] M. Li, Y. F. Li, Z. Zhou, P.W. Shen, Z. F. Chen, Ca-coated boron fullerences and nanotubes as superior hydrogen storage materials, Nano Letters. 9 (2009) 1944 – 8. https://doi.org/10.1021/nl900116q
[59] Y. Hou R. Vidu, P. Stroeve P. Solar Energy Storage Methods. Ind Eng Chem Res. 50 (2011) 8954–64. https://doi.org/10.1021/ie2003413
[60] S. Kuravi, J. Trahan, D.Y. Goswami, M.M. Rahman, E.K. Stefanakos, Thermal energy storage technologies and systems for concentrating solar power plants. Prog Energy Combust Sci. 39 (2013) 285–319. https://doi.org/10.1016/j.pecs.2013.02.001
[61] Z. Wang, W. Yang. F. Qiu, X. Zhang, X. Zhao, Solar water heating: From theory, application, marketing and research. Renew Sustain Energy Rev. 41 (2015) 68–84. https://doi.org/10.1016/j.rser.2014.08.026
[62] H.J. Ahn, W. J. Moon, T.Y. Seong, D. Wang, In situ X-ray spectromicroscopy study of bipolar plate material stability for nano-fuel-cells with ionic-liquid electrolyte, Electrochem. Commun. 11 (2009) 635. https://doi.org/10.1016/j.elecom.2008.12.056
[63] C. Santoro, K. Artyushkova, S. Babanova, P. Atanassov, I. Ieropoulos, M. Grattieri, P. Cristiani, S. Trasatti, B. Li, A.J. Schuler, Parameters characterization and optimization of activated carbon (AC) cathodes for microbial fuel cell application, Bioresour. Technol. 163 (2014) 54–63.] https://doi.org/10.1016/j.biortech.2014.03.091
[64] A. Iwan, M. Malinowski, G. Pasciak, Polymer fuel cell components modified by graphene: electrodes, electrolytes and bipolar plates, Renew. Sustain. Energy Rev. 49 (2015) 954–967. https://doi.org/10.1016/j.rser.2015.04.093
[65] L.T. Soo, K.S. Loh, A.B. Mohamad, W.R.W. Daud, W.Y. Wong, An overview of the electrochemical performance of modified graphene used as an electrocatalyst and as a catalyst support in fuel cells, Appl. Catal. A 497 (2015) 198–210. https://doi.org/10.1016/j.apcata.2015.03.008
[66] Y.-C. Chiang, M.-K. Hsieh, H.-H. Hsu, The effect of carbon supports on the performance of platinum/carbon nanotubes for proton exchange membrane fuel cells, Thin Solid Films 570 (Part B) (2014) 221–229.
[67] M. Borghei, G. Scotti, P. Kanninen, T. Weckman, I.V. Anoshkin, A.G. Nasibulin, S. Franssila, E.I. Kauppinen, T. Kallio, V. Ruiz, Enhanced performance of a silicon microfabricated direct methanol fuel cell with PtRu catalysts supported on few-walled carbon nanotubes, Energy 65 (2014) 612–620. https://doi.org/10.1016/j.energy.2013.11.067
[68] P. Kanninen, M. Borghei, O. Sorsa, E. Pohjalainen, E.I. Kauppinen, V. Ruiz, T.Kallio, Highly efficient cathode catalyst layer based on nitrogen-doped carbon nanotubes for the alkaline direct methanol fuel cell, Appl. Catal. B 156–157 (2014) 341–349. https://doi.org/10.1016/j.apcatb.2014.03.041
[69] Z. Xie, G. Chen, X. Yu, M. Hou, Z. Shao, S. Hong, C. Mu, Carbon nanotubes grown in situ on carbon paper as a microporous layer for proton exchange membrane fuel cells, Int. J. Hydrogen Energy 40 (29) (2015) 8958–8965. https://doi.org/10.1016/j.ijhydene.2015.04.129
[70] J. Song, G. Li, J. Qiao, Ultrafine porous carbon fiber and its supported platinum catalyst for enhancing performance of proton exchange membrane fuel cells,Electrochim. Acta 177 (2015) 174–180. https://doi.org/10.1016/j.electacta.2015.03.142
[71] A.Garcia-Gallastegui, D. Iruretagoyena, V. Gouvea, M. Mokhtar, A.M. Asiri, S.N. Basahel, S.A. Al-Thabaiti, A.O. Alyoubi, D. Chadwick, M.S.P. Shaffer, Graphene oxide as support for layered double hydroxides: enhancing the CO2 adsorption capacity. Chem. Mater. 24 (2012) 4531 –4539. https://doi.org/10.1021/cm3018264
[72] Z. Kang, M. Xue, D. Zhang, L. Fan, Y. Pan, S. Qiu, Hybrid metal-organic framework nanomaterials with enhanced carbon dioxide and methane adsorption enthalpy by incorporation of carbon nanotubes. Inorg. Chem. Commun. 58 (2015) 79 –83. https://doi.org/10.1016/j.inoche.2015.06.007
[73] K.C. Kemp, H. Seema, M. Saleh, N.H. Le, K. Mahesh, V. Chandra, K.S. Kim, Environmental applications using graphene composites: water remediation and gas adsorption. Nano 5 (2013) 3149 –3171.
[74] N.H. Khdary, M.A. Ghanem, M.A., 2012. Metal-organic-silica nanocomposites: copper, silver nanoparticles-ethylenediamine-silica gel and their CO2 adsorption behaviour. J. Mater. Chem. 22 (2012) 12032 –12038 https://doi.org/10.1039/c2jm31104f