Classical Thermoset Epoxy Composites for Structural Purposes: Designing, Preparation, Properties and Applications

$20.00

Classical Thermoset Epoxy Composites for Structural Purposes: Designing, Preparation, Properties and Applications

A.E. Kolosov, E.P. Kolosova, V.V. Vanin, Anish Khan

Classical thermosetting epoxy composites for structural purpose, along with nanocomposites, are now widely used in various industries. An epoxy matrix is considered as a dominant polymer matrix in the design of such composites due to its study, high performance and wide commercial use. The optimization of processes and design and technological parameters of the equipment for their molding and processing of the polymer composite materials (PCMs), as well as the creation of PCMs with a predetermined set of properties, remains an urgent task nowadays. Equally important problems are the production of defect-free and monolithic structures of such composites while increasing the productivity of their molding. Particular attention is paid to low-frequency ultrasonic as a basic method of physical modification of the liquid epoxy media and intensification of the processes of capillary impregnation and “wet” winding.

Keywords
Thermoset, Epoxy, Composite, Prepreg, Modeling, Design, Technology, Ultrasonic

Published online 10/1/2018, 40 pages

DOI: http://dx.doi.org/10.21741/9781945291876-9

Part of the book on Thermoset Composites

References
[1] Yu. S. Lipatov, Structure and Strength of Polymers, Chemistry, Moscow, 1980.
[2] V. N. Kuleznev, V. K. Gusev, Fundamentals of plastics processing technology, Khimiya, Moscow, 1995.
[3] O. G. Tsyplakov, Scientific Bases of Fiber-Composite Material Technology, Part 1 [in Russian], Perm, 1974.
[4] A. S. Freidin, R. A. Turusov, Properties and Design of Adhesive Compounds [in Russian], Khimiya, Moscow, 1990.
[5] I. Z. Chernin, F. M. Smekhov, Yu.V. Zherdev, Epoxy polymers and compositions [in Russian], Khimiya, Moscow, 1982.
[6] Yu. S. Zaitsev, Yu. S. Kochergin, M. K. Pakter, R. V. Kucher, Epoxy Oligomers and Adhesive Composition, Naukova Dumka, Kiev, 1990.
[7] A. G. Voronkov, V. P. Yartsev, Epoxy Polymer Solutions for Repair and Protection of Building Objects and Structures: Textbook [in Russian], TGTU, Tambov, 2006.
[8] Ultrasonic, Small Encyclopedia [in Russian], Moscow, 1979.
[9] B. G. Novitskii, Use of Acoustic Vibrations in Chemical Technology Processes, Khimiya, Moscow, 1983.
[10] M. A. Margulis, Sound-Chemistry Reactions and Sound-Luminescence [in Russian], Khimiya, Moscow, 1986.
[11] I. M. Fedotkin, I. S. Gulyi, Cavitation, Cavitation Engineering and Technology, Their Use in Industry. Part II, OKO, Kiev, 2000.
[12] O. E. Kolosov, Disturbances of Processes and Equipment Used in Fabrication of Articles from Epoxy Polymer Compositions by Means of Ultrasonic Modification [in Ukrainian], Author’s Abstract of Dissertation for the Degree of Doctor of Technical Sciences, Specialization 05.17.08: Processes and Equipment of Chemical Technology, Sichkar, Kiev, 2010.
[13] O. E. Kolosov, V. I. Sivetskii, O. P. Kolosova, Preparation of Fiber-Filled Reactoplastic Polymer Composite Materials with Ultrasonic Treatment [in Ukrainian], VPK Politekhnika, Kiev, 2015.
[14] A. E. Kolosov, Efficiency of liquid reactoplastic composite heterofrequency ultrasonic treatment, Chem. and Petrol. Eng. 50 (3–4) (2014) 268–272, https://doi.org/10.1007/s10556-014-9893-y.
[15] A. E. Kolosov, Low-Frequency Ultrasonic Treatment of Liquid Reactoplastic Media with Pressure Variation, Chem. and Petrol. Eng. 50 (5–6) (2014) 339–342, https://doi.org/10.1007/s10556-014-9904-z
[16] A. E. Kolosov, Low-Frequency Ultrasonic Treatment as an Effective Method for Modifying Liquid Reactoplastic Media, Chem. and Petrol. Eng. 50 (1–2) (2014) 79–83, https://doi.org/10.1007/s10556-014-9859-0.
[17] A. E. Kolosov, Effect of low-frequency ultrasonic treatment regimes on reactoplastic polymer composite material operating properties, Chem. and Petrol. Eng. 50 (3–4) (2014) 150–155, https://doi.org/10.1007/s10556-014-9871-4.
[18] A. A. Karimov, A. E. Kolosov, V. G. Khozin, V. V. Klyavlin, Impregnation of fibrous fillers with polymer binders. 4. Effect of the parameters of ultrasound treatment on the strength characteristics of epoxy binders, Mech. Compos. Mater. 25 (1) (1989) 82–88, https://doi.org/10.1007/bf00608456.
[19] A. E. Kolosov, I. A. Repelis, V. G. Khozin, V. V. Klyavlin, Impregnation of fibrous fillers with polymer binders. 2. Effect of the impregnation regimes on the strength of the impregnated fillers, Mech. Compos. Mater. 24 (3) (1988) 373–380, https://doi.org/10.1007/bf00606611.
[20] A. E. Kolosov, Prerequisites for using ultrasonic treatment for intensifying production of polymer composite materials, Chem. and Petrol. Eng. 50 (1–2) (2014) 11–17, https://doi.org/10.1007/s10556-014-9846-5.
[21] A. E. Kolosov, A. A. Karimov, V. G. Khozin, V. V. Klyavlin, Impregnation of fibrous fillers with polymer binders. 3. Ultrasonic intensification of impregnation, Mech. Compos. Mater. 24 (4) (1989) 494–502, https://doi.org/10.1007/bf00608132.
[22] A. V. Donskoi, O. K. Keller, G. S. Kratysh, Ultrasonic Electrotechnical Devices [in Russian], Energoizdat, Leningrad, 1982.
[23] A. E. Kolosov, A. S. Sakharov, V. I. Sivetskii, D. E. Sidorov, A. L. Sokolskii, Method of selecting efficient design and operating parameters for equipment used for the ultrasonic modification of liquid-polymer composites and fibrous fillers, Chem. and Petrol. Eng. 48 (7–8) (2012) 459–466, https://doi.org/10.1007/s10556-012-9640-1.
[24] A. E. Kolosov, V. I. Sivetskii, E. P. Kolosova, E. A. Lugovskaya, Procedure for analysis of ultrasonic cavitator with radiative plate, Chem. and Petrol. Eng. 48 (11–12) (2013) 662–672, https://doi.org/10.1007/s10556-013-9677-9.
[25] A. E. Kolosov, Impregnation of fibrous fillers with polymer binders. 1. Kinetic equations of longitudinal and transverse impregnation. Mech. Compos. Mater. 23, I. 5 (1988) 625–633, https://doi.org/10.1007/bf00605688.
[26] A. E. Kolosov, I. A. Repelis, Saturation of fibrous fillers with polymer binders 5. Optimization of parameters of the winding conditions, Mech. Compos. Mater. 25 (3) (1989) 407–415, https://doi.org/10.1007/bf00614811.
[27] A. F. Kichigin, A. E. Kolosov, V. V. Klyavlin, V. G. Sidyachenko, Probabilistic-geometric model of structurally inhomogeneous materials, Soviet Mining Sci. 24, I. 2 (1988) 87–94, https://doi.org/10.1007/bf02497828.
[28] A. E. Kolosov, V. V. Klyavlin, Determination of the parameters of a geometric model of the structure of directionally reinforced fiber composites, Mech. Compos. Mater. 23 (6) (1988) 699–706, https://doi.org/10.1007/bf00616790.
[29] A. E. Kolosov, V. V. Klyavlin, Several aspects of determination of the adequate model of the structure of oriented fiber-reinforced composites, Mech. Compos. Mater. 24 (6) (1989) 751–757, https://doi.org/10.1007/bf00610779.
[30] E. P. Kolosova, V. V. Vanin, A. E. Kolosov, V. I. Sivetskii, Modeling of processes and equipment for the manufacturing of thermosetting materials [in Ukrainian], Igor Sikorsky KPI, Kiev, 2017.
[31] A. E. Kolosov, A. S. Sakharov, V. I. Sivetskii, D. E. Sidorov, A. L. Sokolskii, Substantiation of the efficiency of using ultrasonic modification as a basis of a production cycle for preparing reinforced objects of epoxy polymer composition, Chem. and Petrol. Eng. 48 (5–6) (2012) 391–397, https://doi.org/10.1007/s10556-012-9629-9.
[32] A. E. Kolosov, A. A. Karimov, I. A. Repelis, V. G. Khozin, V. V. Klyavlin, Impregnation of fibrous fillers with polymeric binders. 6. Effect of parameters of ultrasound treatment on strength properties of wound fibrous composites, Mech. Compos. Mater. 25 (4) (1990) 548–555, https://doi.org/10.1007/bf00610711.
[33] O. E. Kolosov, V. I. Sivets’kii, E. M. Panov, I. O. Mikulyonok, V. V. Klyavlin, D. E. Sidorov, Mathematical Modeling of Basic Processes in the Fabrication of Polymer Composite Materials with Use of Ultrasonic Modification [in Ukrainian], VD Edelveis, Kiev, 2012.
[34] O. E. Kolosov, Molding of Polymer Composites with the Use of Physicochemical Modifications. Part 1. Studies of the Prerequisites for Directed Realization of Physicochemical Modifications [in Ukrainian], NTUU KPI, Kiev, 2005.
[35] O. E. Kolosov, V. I. Sivetskii, Molding of Polymer Composites with the Use of Physicochemical Modifications. Part 2. Effective Regimes and Equipment for Realization of Physicochemical Modifications [in Ukrainian], NTUU KPI, Kiev, 2006.
[36] O. E. Kolosov, V. I. Sivets’kii, Ye. M. Panov, Technology for Production of Multicomponent Epoxy Polymers with Use of Intentional Physicochemical Modification [in Ukrainian], NTUU KPI, 2010.
[37] A. E. Kolosov, G. A. Virchenko, E. P. Kolosova, G. I. Virchenko, Structural and technological design of ways for preparing reactoplastic composite fiber materials based on structural parametric modeling, Chem. and Petrol. Eng. 51 (7–8) (2015) 493–500, https://doi.org/10.1007/s10556-015-0075-3.
[38] E. P. Kolosova, V. V. Vanin, G. A.Virchenko, A. E. Kolosov, Modeling of manufacturing processes of reactoplastic composite-fibrous materials [in Ukrainian], VPI VPK Politekhnika, Kiev, 2016.
[39] D. E. Sidorov, V. I. Sivetskii, A. E. Kolosov, A. S. Sakharov, Shaping of corrugation profiles during production of corrugated tubular articles, Chem. and Petrol. Eng. 48 (5–6) (2012) 384–390, https://doi.org/10.1007/s10556-012-9628-x.
[40] A. E. Kolosov, A. S. Sakharov, D. E. Sidorov, V. I. Sivetskii, Aspects of profile shaping of corrugated tubular components. Part 1. Modeling of parameters of different profiles of corrugations, and also their shaping equipment, Chem. and Petrol. Eng. 48 (1–2) (2012) 60–67, https://doi.org/10.1007/s10556-012-9575-6.
[41] A. E. Kolosov, A. S. Sakharov, D. E. Sidorov, V. I.Sivetskii, Manufacturing Technology: Aspects of profile shaping of corrugated tubular components. Part 2. Modeling the extrusion welding of layers of corrugated tubular articles, Chem. and Petrol. Eng. 48 (1–2) (2012) 131–138, https://doi.org/10.1007/s10556-012-9588-1.
[42] A. E. Kolosov, A. S. Sakharov, D. E. Sidorov, V. I. Sivetskii, Aspects of profile shaping of corrugated tubular components. Part 3. Extrusion shaping of tubular polymeric blanks for manufacture of corrugated pipes, Chem. and Petrol. Eng. 48 (3–4) (2012) 199–206, https://doi.org/10.1007/s10556-012-9598-z.
[43] A. S. Sakharov, A. E. Kolosov, A. L. Sokolskii, V. I. Sivetskii, Modeling the mixing of polymeric composites in an extrusion drum mixer, Chem. And Petrol. Eng. 47 (11–12) (2012) 799–805, https://doi.org/10.1007/s10556-012-9553-z.
[44] K. G. Kovalenko, A. E. Kolosov, V. I. Sivetskii, A. L. Sokolskii, Modeling Polymer Melt Flow at the Outlet from an Extruder Molding Tool, Chem. and Petrol. Eng. 49 (11) (2014) 792–797, https://doi.org/10.1007/s10556-014-9837-6.
[45] A. S. Sakharov, A. E. Kolosov, V. I. Sivetskii, A. L. Sokolskii, Modeling of Polymer Melting Processes in Screw Extruder Channels, Chem. and Petrol. Eng. 49 (5–6) (2013) 357–363, https://doi.org/10.1007/s10556-013-9755-z.
[46] A. E. Kolosov, Preparation of Nano-Modified Reactoplast Polymer Composites. Part 1. Features of used nanotechnologies and potential alication areas of nanocomposites (a review), Chem. and Petrol. Eng. 51 (7–8) (2015) 569–573, https://doi.org/10.1007/s10556-015-0088-y.
[47] O. E. Kolosov, Preparation of Traditional and Nanomodified Reactoplastic Polymer Composite Materials [in Ukrainian], Izd. VPI VPK Politekhnika, Kiev, 2015.
[48] A. E. Kolosov, Preparation of Reactoplastic Nanomodified Polymer Composites. Part 2. Analysis of means of forming nanocomposites (patent review), Chem. and Petrol. Eng. 51 (9–10) (2016) 640–645, https://doi.org/10.1007/s10556-016-0100-1.
[49] A. E. Kolosov, Preparation of Reactoplastic Nanomodified Polymer Composites. Part 3. Methods for dispersing carbon nanotubes in organic solvents and liquid polymeric media (review), Chem. and Petrol. Eng. 52 (1–2) (2016) 71–76, https://doi.org/10.1007/s10556-016-0151-3.
[50] A. E. Kolosov, Preparation of Reactoplastic Nanomodified Polymer Composites. Part 4. Effectiveness of modifying epoxide oligomers with carbon nanotubes (review), Chem. and Petrol. Eng. 52 (7–8) (2016) 573–577, https://doi.org/10.1007/s10556-016-0235-0.
[51] A. E. Kolosov, Preparation of Reactoplastic Nano-Modified Polymer Composites. Part 5. Advantages of using nano-modified structural carbon-fiber composites (a review), Chem. and Petrol. Eng. 52 (9–10) (2017) 721–725, https://doi.org/10.1007/s10556-017-0259-0.
[52] A. E. Kolosov, E. P. Kolosova, Functional Materials for Construction Application Based on Classical and Nano Composites: Production and Properties, in: Rita Khanna, Romina Cayumil (Eds.), Recent Developments in the field of Carbon Fibers, InTechOpen, 2018, ISBN: 978-953-51-6055-7.
[53] I. Ivitskiy, V. Sivetskiy, V. Bazhenov, D. Ivitska, Modeling the electrostatic control over depth of the introduction of intelligent sensors into a polymer composite material, East.-Europ. J. of Enterprise Technol., 1 (5 (85)) (2017) 4–9, https://doi.org/10.15587/1729-4061.2017.91659
[54] V. I. Sivetskii, A. E. Kolosov, A. L. Sokolskii, I. I. Ivitskiy, Technologies and equipment for the molding of products from traditional and intelligent polymeric composite materials [in Ukrainian], VPI VPK Politekhnika, Kiev, 2017.
[55] A.E. Kolosov, O.S. Sakharov, V.I. Sivetskii, D.E. Sidorov, S.O. Pristailov, Effective hardware for connection and repair of polyethylene pipelines using ultrasonic modification and heat shrinkage. Part 1. Aspects of connection and restoration of polymeric pipelines for gas transport, Chem. and Petrol. Eng. 47 (2011) 204–209, https://doi.org/10.1007/s10556-011-9447-5.
[56] A. E. Kolosov, O. S. Sakharov, V.I. Sivetskii, D. E. Sidorov, S.O. Pristailov, Effective hardware for connection and repair of polyethylene pipelines using ultrasonic modification and heat shrinkage. Part 3. Analysis of surface-treatment methods for polyethylene pipes connected by banding, Chem. and Petrol. Eng. 47 (2011) 216, https://doi.org/10.1007/s10556-011-9449-3.
[57] A. E. Kolosov, O.S. Sakharov, V.I. Sivetskii, D.E. Sidorov, S.O. Pristailov, Effective hardware for connection and repair of polyethylene pipelines using ultrasonic modification and heat shrinkage. Part 4. Characteristics of practical implementation of production bases developed using epoxy-glue compositions and banding, Chem. and Petrol. Eng. 47 (2011) 280, https://doi.org/10.1007/s10556-011-9460-8.
[58] A.E. Kolosov, O.S.Sakharov, V.I.Sivetskii, D.E. Sidorov, S.O. Pristailov, Effective hardware for connection and repair of polyethylene pipelines using ultrasonic modification and heat shrinkage. Part 2. Production bases for molding of epoxy repair couplings with shape memory, Chem. and Petrol. Eng. 47 (2011) 210, https://doi.org/10.1007/s10556-011-9448-4.
[59] A. E. Kolosov, O. S. Sakharov, V. I. Sivetskii, D. E. Sidorov, S. O. Pristailov, Effective hardware for connection and repair of polyethylene pipelines using ultrasound modification and heat shrinking. Part 5. Aspects of thermistor couplings and components used in gas-pipeline repair, Chem. and Petrol. Eng. 47 (2011) 285, https://doi.org/10.1007/s10556-011-9461-7.
[60] A. V. Yeromin, A. E. Kolosov, Modeling of energy effective solutions regarding the heating system and facade heat insulation during implementation of thermomodernization, Technol. Audit and Product. Reserves. 1/8 (91) (2018) 49–58, https://doi.org/10.15587/1729-4061.2018.123021.
[61] D.É. Sidorov, A.E. Kolosov, O.V. Pogorelyi, I.A. Kazak, Engineering Analysis of Thermal-Load Components in the Process of Heating of Pet Preforms, Journ. of Eng. Phys. and Thermophys. 2 (2) (2018) 1–5, https://doi.org/10.1007/s10891-018-1768-1.
[62] D. E. Sidorov, E. P. Kolosova, A. E. Kolosov, T. A. Shabliy, Analysis of blown process for producing polymer products by extrusion blow molding, East.-Eur. J. of Enterpr. Technol. 2/1 (92) (2018) 14–21, https://doi.org/10.15587/1729-4061.2018.126015.