Waterborne Thermosetting Polyurethane Composites


Waterborne Thermosetting Polyurethane Composites

Sashivinay Kumar Gaddam, Pothu Ramyakrishna, Aditya Saran, Rajender Boddula

This chapter provides a background of waterborne thermosetting polyurethane composite synthesis, physico-chemical properties and their applications as coatings, adhesives and printing inks. The reinforcement of waterborne polyurethane dispersion (PUD) matrix with different inorganic nanofillers develops cross-linking networks and leads to their high modulus, strength, durability, and resistance towards weather and chemical attacks. Thereby, a brief survey on different functionalization methods of nanofillers for the development of advanced waterborne PUD thermosetting composites with specific properties, including shape memory, fire retardancy, corrosion resistance and antimicrobial activity, is given.

Waterborne Polyurethanes, Thermoset, Composites, Metal/Metaloxide Nanoparticles, Carbohydrates, Clays, Carbon Nanomaterials

Published online 10/1/2018, 43 pages

DOI: http://dx.doi.org/10.21741/9781945291876-8

Part of the book on Thermoset Composites

[1] J.P. Pascault, R.J.J. Williams, Overview of thermosets: structure, properties and processing for advanced applications. Thermosets, (2012) 3-27. (Elsevier). https://doi.org/10.1533/9780857097637.1.3
[2] J. Guilleminot, S. Comas-Cardona, D. Kondo, C. Binetruy, P. Krawczak, Multiscale modelling of the composite reinforced foam core of a 3D sandwich structure. Compos. Sci.Technol. 68 (2008) 1777-1786. https://doi.org/10.1016/j.compscitech.2008.02.005
[3] A. Yousefi, P. G. Lafleur, R. Gauvin, Kinetic studies of thermoset cure reactions: a review. Polym. Compos. 18 (1997) 157-168. https://doi.org/10.1002/pc.10270
[4] D. Feldman, Composites, thermosetting polymers. Polymeric Materials Encyclopedia. (1996) 277-278.
[5] S. K. Bobade, N. R. Paluvai, S. Mohanty, S. K. Nayak, Bio-based thermosetting resins for future generation: a review. Polym. Plast. Technol. Eng. 55 (2016) 1863-1896. https://doi.org/10.1080/03602559.2016.1185624
[6] C. Zhang, S. A. Madbouly, M. R. Kessler, Biobased polyurethanes prepared from different vegetable oils. ACS Appl. Mater. Interfaces. 7 (2015) 1226-1233. https://doi.org/10.1021/am5071333
[7] H. Bakhshi, H. Yeganeh, S. Mehdipour-Ataei, A. Solouk, S. Irani, Polyurethane coatings derived from 1, 2, 3-triazole-functionalized soybean oil-based polyols: studying their physical, mechanical, thermal, and biological properties. Macromolecules. 46 (2013) 7777-7788. https://doi.org/10.1021/ma401554c
[8] J. M. Raquez, M. Deléglise, M. F. Lacrampe, P. Krawczak, Thermosetting (bio) materials derived from renewable resources: a critical review. Prog. Polym. Sci. 35 (2010) 487-509. https://doi.org/10.1016/j.progpolymsci.2010.01.001
[9] K. M. Zia, H. N. Bhatti, I. A. Bhatti, Methods for polyurethane and polyurethane composites, recycling and recovery: A review. React. Funct. Polym. 67 (2007) 675-692. https://doi.org/10.1016/j.reactfunctpolym.2007.05.004
[10] J. C. Wang, Y. H. Chen, R. J. Chen, Preparation of thermosetting polyurethane nanocomposites by montmorillonite modified with a novel intercalation agent. J. Polym. Sci. Part B Polym. Phys. 45 (2007) 519-531.
[11] D. P. Pfister, Y. Xia, R. C. Larock, Recent advances in vegetable oil‐based polyurethanes. ChemSusChem. 4 (2011) 703-717. https://doi.org/10.1002/cssc.201000378
[12] A. Zlatanić, C. Lava, W. Zhang, Z. S. Petrović, Effect of structure on properties of polyols and polyurethanes based on different vegetable oils. J. Polym. Sci. Part B Polym. Phys. 42 (2004) 809-819. https://doi.org/10.1002/polb.10737
[13] M. Visconti, M. Cattaneo, A highly efficient photoinitiator for water-borne UV-curable systems. Prog.Org. Coat. 40 (2000) 243-251. https://doi.org/10.1016/S0300-9440(00)00147-8
[14] D. Y. Xie, F. Song, M. Zhang, X. L. Wang, Y. Z. Wang, Roles of soft segment length in structure and property of soy protein isolate/waterborne polyurethane blend films. Ind. Eng. Chem. Res. 55 (2016) 1229-1235. https://doi.org/10.1021/acs.iecr.5b04185
[15] S. A. Madbouly, Y. Xia, M. R. Kessler, Rheological behavior of environmentally friendly castor oil-based waterborne polyurethane dispersions. Macromolecules. 46 (2013) 4606-4616. https://doi.org/10.1021/ma400200y
[16] H. K. Shendi, I. Omrani, A. Ahmadi, A. Farhadian, N. Babanejad, M. R. Nabid, Synthesis and characterization of a novel internal emulsifier derived from sunflower oil for the preparation of waterborne polyurethane and their application in coatings. Prog.Org. Coat. 105 (2017) 303-309. https://doi.org/10.1016/j.porgcoat.2016.11.033
[17] S. C. Wang, P. C. Chen, J. T. Yeh, K. N. Chen, A new curing agent for self-curable system of aqueous-based PU dispersion. React. Funct. Polym. 67 (2007) 299-311. https://doi.org/10.1016/j.reactfunctpolym.2007.01.002
[18] H. Zou, S. Wu, J. Shen, Polymer/silica nanocomposites: preparation, characterization, properties, and applications. Chem. Rev. 108 (2008) 3893-3957. https://doi.org/10.1021/cr068035q
[19] H. Sardon, L. Irusta, M. J. Fernández-Berridi, M. Lansalot, E. Bourgeat-Lami, Synthesis of room temperature self-curable waterborne hybrid polyurethanes functionalized with (3-aminopropyl) triethoxysilane (APTES). Polymer. 51 (2010) 5051-5057. https://doi.org/10.1016/j.polymer.2010.08.035
[20] L. Zhai, R. Liu, F. Peng, Y. Zhang, K. Zhong, J. Yuan, Y. Lan, Synthesis and characterization of nanosilica/waterborne polyurethane end‐capped by alkoxysilane via a sol‐gel process. J. Appl. Polym. Sci. 128 (2013) 1715-1724.
[21] T. Gurunathan, J. S. Chung, Physicochemical properties of amino–silane-terminated vegetable oil-based waterborne polyurethane nanocomposites. ACS Sustain. Chem. Eng. 4 (2016) 4645-4653. https://doi.org/10.1021/acssuschemeng.6b00768
[22] K. M. Seeni Meera, R. Murali Sankar, S. N. Jaisankar, A. B. Mandal, Physicochemical studies on polyurethane/siloxane cross-linked films for hydrophobic surfaces by the sol–gel process. J. Phys. Chem. B. 117 (2013) 2682-2694. https://doi.org/10.1021/jp3097346
[23] H. T. Jeon, M. K. Jang, B. K. Kim, K. H. Kim, Synthesis and characterizations of waterborne polyurethane–silica hybrids using sol–gel process. Colloid Surf. A. 302 (2007) 559-567. https://doi.org/10.1016/j.colsurfa.2007.03.043
[24] M. M. Rahman, H. H. Chun, H. Park, Preparation and properties of waterborne polyurethane-silane: A promising antifouling coating. Macromol Res. 19 (2011) 8-13. https://doi.org/10.1007/s13233-011-0116-5
[25] A. Agirre, J. Nase, C. Creton, J. M. Asua, Adhesives for Low‐Energy Surfaces. Macromol. Symp. 281 (2009) 181-190. https://doi.org/10.1002/masy.200950724
[26] A. Agirre, J. Nase, E. Degrandi, C. Creton, J. M. Asua, Improving adhesion of acrylic waterborne PSAs to low surface energy materials: introduction of stearyl acrylate. J. Polym. Sci., Part A: Polym. Chem. 48 (2010) 5030-5039. https://doi.org/10.1002/pola.24300
[27] S. K. Gaddam, S. R. Kutcherlapati, A. Palanisamy, Self-Cross-Linkable Anionic Waterborne Polyurethane–Silanol Dispersions from Cottonseed-Oil-Based Phosphorylated Polyol as Ionic Soft Segment. ACS Sustain. Chem. Eng. 5 (2017) 6447-6455. https://doi.org/10.1021/acssuschemeng.7b00327
[28] S. Pathan, S. Ahmad, Synergistic effects of linseed oil based waterborne alkyd and 3-isocynatopropyl triethoxysilane: Highly Transparent, Mechanically robust, thermally stable, hydrophobic, anticorrosive coatings. ACS Sustain. Chem. Eng. 4 (2016) 3062-3075. https://doi.org/10.1021/acssuschemeng.6b00024
[29] L. Lei, Y. Zhang, C. Ou, Z. Xia, L. Zhong, Synthesis and characterization of waterborne polyurethanes with alkoxy silane groups in the side chains for potential application in waterborne ink. Prog.Org. Coat. 92 (2016) 85-94. https://doi.org/10.1016/j.porgcoat.2015.11.019
[30] Fischer, A. M., & Frey, H. (2010). Soluble hyperbranched poly (glycolide) copolymers. Macromolecules. 43 (20), 8539-8548. https://doi.org/10.1021/ma101710t
[31] S. G. Ramkumar, K. A. Rose, S. Ramakrishnan, Direct synthesis of terminally “clickable” linear and hyperbranched polyesters. J. Polym. Sci., Part A: Polym. Chem. 48 (2010) 3200-3208. https://doi.org/10.1002/pola.24108
[32] X. H. Liu, Y. M. Bao, X. L. Tang, Y. S. Li, Synthesis of hyperbranched polymers via a facile self-condensing vinyl polymerization system–Glycidyl methacrylate/Cp2TiCl2/Zn. Polymer. 51 (2010) 2857-2863. https://doi.org/10.1016/j.polymer.2010.04.034
[33] W. Han, Synthesis and properties of networking waterborne polyurethane/silica nanocomposites by addition of poly (ester amine) dendrimer. Polym. Compos. 34 (2013) 156-163. https://doi.org/10.1002/pc.22388
[34] K. K. Jena, S. Sahoo, R. Narayan, T. M. Aminabhavi, K. V. S. N. Raju, Novel hyperbranched waterborne polyurethane‐urea/silica hybrid coatings and their characterizations. Polym. Int. 60 (2011) 1504-1513. https://doi.org/10.1002/pi.3109
[35] H. C. Kolb, M. G. Finn, K. B. Sharpless, Click chemistry: diverse chemical function from a few good reactions. Angew. Chem. Int. Ed. 40 (2001) 2004-2021. https://doi.org/10.1002/1521-3773(20010601)40:11<2004::AID-ANIE2004>3.0.CO;2-5
[36] C. Ornelas, J. Broichhagen, M. Weck, Strain-promoted alkyne azide cycloaddition for the functionalization of poly (amide)-based dendrons and dendrimers. J. Am. Chem. Soc. 132 (2010) 3923-3931. https://doi.org/10.1021/ja910581d
[37] D. Sun, X. Miao, K. Zhang, H. Kim, Y. Yuan, Triazole-forming waterborne polyurethane composites fabricated with silane coupling agent functionalized nano-silica. J. Colloid Interface Sci. 361 (2011) 483-490. https://doi.org/10.1016/j.jcis.2011.05.062
[38] C. E. Hoyle, C. N. Bowman, Thiol–ene click chemistry. Angew. Chem. Int. Ed. 49 (2010) 1540-1573. https://doi.org/10.1002/anie.200903924
[39] M. Desroches, S. Caillol, V. Lapinte, R. Auvergne, B. Boutevin, Synthesis of biobased polyols by thiol− ene coupling from vegetable oils. Macromolecules. 44 (2011) 2489-2500. https://doi.org/10.1021/ma102884w
[40] O. Türünç, M. A. Meier, The thiol‐ene (click) reaction for the synthesis of plant oil derived polymers. Eur. J. Lipid Sci. Technol. 115 (2013) 41-54. https://doi.org/10.1002/ejlt.201200148
[41] C. Fu, X. Hu, Z. Yang, L. Shen, Z. Zheng, Preparation and properties of waterborne bio-based polyurethane/siloxane cross-linked films by an in situ sol–gel process. Prog.Org. Coat. 84 (2015) 18-27. https://doi.org/10.1016/j.porgcoat.2015.02.008
[42] K. Ishizu, N. Kobayakawa, S. Takano, Y. Tokuno, M. Ozawa, Synthesis of polymer particles possessing radical initiating sites on the surface by emulsion copolymerization and construction of core–shell structures by a photoinduced atom transfer radical polymerization approach. J. Polym. Sci., Part A: Polym. Chem. 45 (2007) 1771-1777. https://doi.org/10.1002/pola.21944
[43] L. Zhang, H. Zhang, J. Guo, Synthesis and properties of UV-curable polyester-based waterborne polyurethane/functionalized silica composites and morphology of their nanostructured films. ‎Ind. Eng. Chem. Res. 51 (2012) 8434-8441. https://doi.org/10.1021/ie3000248
[44] Y. C. Chung, T. K. Cho, B. C. Chun, Flexible cross‐linking by both pentaerythritol and polyethyleneglycol spacer and its impact on the mechanical properties and the shape memory effects of polyurethane. J. Appl. Polym. Sci. 112 (2009) 2800-2808. https://doi.org/10.1002/app.29538
[45] E. Zini, M. Scandola, P. Dobrzynski, J. Kasperczyk, M. Bero, Shape Memory Behavior of Novel (l-Lactide− Glycolide− Trimethylene Carbonate) Terpolymers. Biomacromolecules. 8 (2007) 3661-3667. https://doi.org/10.1021/bm700773s
[46] A. Lendlein, H. Jiang, O. Jünger, R. Langer, Light-induced shape-memory polymers. Nature. 434 (2005) 879. https://doi.org/10.1038/nature03496
[47] S. K. Lee, S. H. Yoon, I. Chung, A. Hartwig, B. K. Kim, Waterborne polyurethane nanocomposites having shape memory effects. J. Polym. Sci., Part A: Polym. Chem. 49 (2011) 634-641. https://doi.org/10.1002/pola.24473
[48] M. Barikani, S. Mehdipour‐Ataei, H. Yeganeh, Synthesis and properties of novel optically active polyimides. J. Polym. Sci., Part A: Polym. Chem. 39 (2001) 514-518. https://doi.org/10.1002/1099-0518(20010215)39:4<514::AID-POLA1020>3.0.CO;2-4
[49] H. Yeganeh, M. A. Shamekhi, Poly (urethane-imide-imide), a new generation of thermoplastic polyurethane elastomers with enhanced thermal stability. Polymer. 45 (2004) 359-365. https://doi.org/10.1016/j.polymer.2003.11.006
[50] D. H. Jung, M. A. Jeong, H. M. Jeong, B. K. Kim, Chemical hybridization of imidized waterborne polyurethane with silica particle. Colloid. Polym. Sci. 288 (2010) 1465-1470. https://doi.org/10.1007/s00396-010-2279-6
[51] D. B. Otts, M. W. Urban, Heterogeneous crosslinking of waterborne two-component polyurethanes (WB 2K-PUR); stratification processes and the role of water. Polymer. 46 (2005) 2699-2709. https://doi.org/10.1016/j.polymer.2005.01.053
[52] M. Melchiors, M. Sonntag, C. Kobusch, E. Jürgens, Recent developments in aqueous two-component polyurethane (2K-PUR) coatings. Prog.Org. Coat. 40 (2000) 99-109. https://doi.org/10.1016/S0300-9440(00)00123-5
[53] C. W. Chang, K. T. Lu, Natural castor oil based 2-package waterborne polyurethane wood coatings. Prog.Org. Coat. 75 (2012) 435-443. https://doi.org/10.1016/j.porgcoat.2012.06.013
[54] S. Yue, Z. Zhang, X. Fan, P. Liu, C. Xiao, Effect of 3-aminopropyltriethoxysilane on solvent resistance, thermal stability, and mechanical properties of two-component waterborne polyurethane. Int. J. Polym. Anal. Charact. 20 (2015) 285-297. https://doi.org/10.1080/1023666X.2015.1015931
[55] K. Gupta, R. V. Jain, A. Mittal, M. Mathur, S. Sikarwar, Photochemical degradation of the hazardous dye Safranin-T using TiO2 catalyst. J. Colloid Interface Sci. 309 (2007) 464-469. https://doi.org/10.1016/j.jcis.2006.12.010
[56] D. S. Kim, S. J. Han, S. Y. Kwak, Synthesis and photocatalytic activity of mesoporous TiO2 with the surface area, crystallite size, and pore size. J. Colloid Interface Sci. 316 (2007) 85-91. https://doi.org/10.1016/j.jcis.2007.07.037
[57] L. Chen, H. Shen, Z. Lu, C. Feng, S. Chen, Y. Wang, Fabrication and characterization of TiO 2–SiO 2 composite nanoparticles and polyurethane/(TiO 2–SiO 2) nanocomposite films. Colloid. Polym. Sci. 285 (2007) 1515. https://doi.org/10.1007/s00396-007-1720-y
[58] S. C. Tjong, Structural and mechanical properties of polymer nanocomposites. Mater. Sci. Eng. R Rep. 53 (2006) 73-197. https://doi.org/10.1016/j.mser.2006.06.001
[59] G. Polizos, E. Tuncer, A. L. Agapov, D. Stevens, A. P. Sokolov, M. K. Kidder,… I. Sauers, Effect of polymer–nanoparticle interactions on the glass transition dynamics and the conductivity mechanism in polyurethane titanium dioxide nanocomposites. Polymer. 53 (2012) 595-603. https://doi.org/10.1016/j.polymer.2011.11.050
[60] C. Chen, Y. Wang, G. Pan, Q. Wang, Gel-sol synthesis of surface-treated TiO 2 nanoparticles and incorporation with waterborne acrylic resin systems for clear UV protective coatings. J. Coat. Technol. Res. 11 (2014) 785-791. https://doi.org/10.1007/s11998-014-9583-x
[61] Q. F. Xu, Y. Liu, F. J. Lin, B. Mondal, A. M. Lyons, Superhydrophobic TiO2–polymer nanocomposite surface with UV-induced reversible wettability and self-cleaning properties. ACS Appl. Mater. Interfaces. 5 (2013) 8915-8924. https://doi.org/10.1021/am401668y
[62] H. Yaghoubi, A. Dayerizadeh, S. Han, M. Mulaj, W. Gao, X. Li,… A. Takshi, The effect of surfactant-free TiO2 surface hydroxyl groups on physicochemical, optical and self-cleaning properties of developed coatings on polycarbonate. J Phys D Appl Phys. 46 (2013) 505316. https://doi.org/10.1088/0022-3727/46/50/505316
[63] F. R. Marciano, D. A. Lima-Oliveira, N. S. Da-Silva, A. V. Diniz, E. J. Corat, V. J. Trava-Airoldi, Antibacterial activity of DLC films containing TiO2 nanoparticles. J. Colloid Interface Sci. 340 (2009) 87-92. https://doi.org/10.1016/j.jcis.2009.08.024
[64] O. L. Galkina, A. Sycheva, А. Blagodatskiy, G. Kaptay, V. L. Katanaev, G. A. Seisenbaeva,… A. V. Agafonov, The sol–gel synthesis of cotton/TiO2 composites and their antibacterial properties. Surf. Coat. Technol. 253 (2014) 171-179.
[65] K. Li, J. Peng, M. Zhang, J. Heng, D. Li, C. Mu, Comparative study of the effects of anatase and rutile titanium dioxide nanoparticles on the structure and properties of waterborne polyurethane. Colloids Surf. A. 470 (2015) 92-99. https://doi.org/10.1016/j.colsurfa.2015.01.072
[66] N. Wang, W. Fu, J. Zhang, X. Li, Q. Fang, Corrosion performance of waterborne epoxy coatings containing polyethylenimine treated mesoporous-TiO2 nanoparticles on mild steel. Prog.Org. Coat. 89 (2015) 114-122. https://doi.org/10.1016/j.porgcoat.2015.07.009
[67] D. L. Reid, R. Draper, D. Richardson, A. Demko, T. Allen, E. L. Petersen, S. Seal, In situ synthesis of polyurethane–TiO 2 nanocomposite and performance in solid propellants. J. Mater. Chem. A. 2 (2014) 2313-2322. https://doi.org/10.1039/c3ta14027j
[68] F. Deng, Y. Zhang, X. Li, Y. Liu, Z. Y. Shi, Wang, Synthesis and mechanical properties of dopamine modified titanium dioxide/waterborne polyurethane composites. Polym. Compos. 2017. https://doi.org/10.1002/pc.24654
[69] D. M. Wu, F. X. Qiu, H. P. Xu, D. Y. Yang, Waterborne polyurethane/inorganic hybrid composites: preparation, morphology and properties. Plast. Rubber Compos. 40 (2011) 449-456. https://doi.org/10.1179/1743289810Y.0000000045
[70] A. M. Díez-Pascual, A. L. Díez-Vicente, Wound healing bionanocomposites based on castor oil polymeric films reinforced with chitosan-modified ZnO nanoparticles. Biomacromolecules. 16 (2015) 2631-2644. https://doi.org/10.1021/acs.biomac.5b00447
[71] S. Awad, H. Chen, G. Chen, X. Gu, J. L. Lee, E. E. Abdel-Hady, Y. C. Jean, Free volumes, glass transitions, and cross-links in zinc oxide/waterborne polyurethane nanocomposites. Macromolecules. 44 (2010) 29-38. https://doi.org/10.1021/ma102366d
[72] G. Christopher, M. A. Kulandainathan, G. Harichandran, Highly dispersive waterborne polyurethane/ZnO nanocomposites for corrosion protection. J. Coat. Technol. Res. 12 (2015) 657-667. https://doi.org/10.1007/s11998-015-9674-3
[73] X. Y. Ma, W. D. Zhang, Effects of flower-like ZnO nanowhiskers on the mechanical, thermal and antibacterial properties of waterborne polyurethane. Polym. Degrad. Stab. 94 (2009) 1103-1109. https://doi.org/10.1016/j.polymdegradstab.2009.03.024
[74] W. D. Zhang, Y. M. Zheng, Y. S. Xu, Y. X. Yu, Q. S. Shi, L. Liu,… Y. Ouyang, Preparation and Antibacterial Property of Waterborne Polyurethane/Zn–Al Layered Double Hydroxides/ZnO Nanocomposites. J. Nanosci. Nanotechnol. 13 (2013) 409-416. https://doi.org/10.1166/jnn.2013.6912
[75] J. Ni, Q. Zhao, X. Zhao, Transparent and high infrared reflection film having sandwich structure of SiO2/Al: ZnO/SiO2. Prog.Org. Coat. 64 (2009) 317-321. https://doi.org/10.1016/j.porgcoat.2008.08.030
[76] S. W. Kim, D. K. Lee, Y. S. Kang, Y. J. Kim, Preparation of heat insulating nanocomposite film with MPS (mercaptopropyl trimethoxysilane) coated-nanoparticles. Mol. Cryst. Liq. Cryst. 445 (2006) 81-371. https://doi.org/10.1080/15421400500367058
[77] K. Ravichandran, P. Philominathan, Fabrication of antimony doped tin oxide (ATO) films by an inexpensive, simplified spray technique using perfume atomizer. Mater. Lett. 62 (2008) 2980-2983. https://doi.org/10.1016/j.matlet.2008.01.119
[78] R. Outemzabet, N. Bouras, N. Kesri, Microstructure and physical properties of nanofaceted antimony doped tin oxide thin films deposited by chemical vapor deposition on different substrates. Thin Solid Films. 515 (2007) 6518-6520. https://doi.org/10.1016/j.tsf.2006.11.069
[79] Z. Dai, Z. Li, L. Li, G. Xu, Synthesis and thermal properties of antimony doped tin oxide/waterborne polyurethane nanocomposite films as heat insulating materials. Polym. Adv. Technol. 22 (2011) 1905-1911. https://doi.org/10.1002/pat.1690
[80] S. K. Dhoke, N. Rajgopalan, A. S. Khanna, Effect of nanoalumina on the electrochemical and mechanical properties of waterborne polyurethane composite coatings. J. Nanopart. Res. 2013. https://doi.org/10.1155/2013/527432
[81] A. Mohammadi, M. Barikani, M. M. Lakouraj, Biocompatible polyurethane/thiacalix[4]arenes functionalized Fe 3 O 4 magnetic nanocomposites: Synthesis and properties. Mater. Sci. Eng. C. 66 (2016) 106-118. https://doi.org/10.1016/j.msec.2016.04.064
[82] F. Yan, J. Li, J. Zhang, F. Liu, W. Yang, Preparation of Fe 3 O 4/polystyrene composite particles from monolayer oleic acid modified Fe 3 O 4 nanoparticles via miniemulsion polymerization. ‎J. Nanopart. Res. 11 (2009) 289-296. https://doi.org/10.1007/s11051-008-9382-3
[83] L. M. dos Santos, R. Ligabue, A. Dumas, C. Le Roux, P. Micoud, J. F. Meunier,… S. Einloft, Waterborne polyurethane/Fe 3 O 4-synthetic talc composites: synthesis, characterization, and magnetic properties. Polym. Bull. (2017) 1-16.
[84] S. Zhang, Y. Li, L. Peng, Q. Li, S. Chen, K. Hou, Synthesis and characterization of novel waterborne polyurethane nanocomposites with magnetic and electrical properties. Compos Part A: Appl. Sci. Manuf. 55 (2013) 94-101. https://doi.org/10.1016/j.compositesa.2013.05.018
[85] S. Chen, S. Zhang, Y. Li, G. Zhao, Synthesis and properties of novel UV–curable hyperbranched waterborne polyurethane/Fe 3 O 4 nanocomposite films with excellent magnetic properties. RSC Adv. 5 (2015) 4355-4363. https://doi.org/10.1039/C4RA13683G
[86] M. Y. Mamaghani, M. Pishvaei, B. Kaffashi, Synthesis of latex based antibacterial acrylate polymer/nanosilver via in situ miniemulsion polymerization. Macromol Res. 19 (2011) 243-249. https://doi.org/10.1007/s13233-011-0307-0
[87] P. Jain, T. Pradeep, Potential of silver nanoparticle‐coated polyurethane foam as an antibacterial water filter. Biotechnol. Bioeng. 90 (2005) 59-63. https://doi.org/10.1002/bit.20368
[88] V. Alt, T. Bechert, P. Steinrücke, M. Wagener, P. Seidel, E. Dingeldein,… R. Schnettler, An in vitro assessment of the antibacterial properties and cytotoxicity of nanoparticulate silver bone cement. Biomaterials. 25 (2004) 4383-4391. https://doi.org/10.1016/j.biomaterials.2003.10.078
[89] R. Kumar, H. Münstedt, Silver ion release from antimicrobial polyamide/silver composites. Biomaterials. 26 (2005) 2081-2088. https://doi.org/10.1016/j.biomaterials.2004.05.030
[90] S. H. Hsu, H. J. Tseng, Y. C. Lin, The biocompatibility and antibacterial properties of waterborne polyurethane-silver nanocomposites. Biomaterials. 31 (2010) 6796-6808. https://doi.org/10.1016/j.biomaterials.2010.05.015
[91] R. Foldbjerg, D. A. Dang, H. Autrup, Cytotoxicity and genotoxicity of silver nanoparticles in the human lung cancer cell line, A549. Arch. Toxicol. 85 (2011) 743-750. https://doi.org/10.1007/s00204-010-0545-5
[92] H. L. Liu, S. A. Dai, K. Y. Fu, S. H. Hsu, Antibacterial properties of silver nanoparticles in three different sizes and their nanocomposites with a new waterborne polyurethane. ‎Int. J. Nanomed. 5 (2010) 1017. https://doi.org/10.2147/IJN.S14572
[93] Y. Wattanodorn, R. Jenkan, P. Atorngitjawat, S. Wirasate, Antibacterial anionic waterborne polyurethanes/Ag nanocomposites with enhanced mechanical properties. Polym. Test. 40 (2014) 163-169. https://doi.org/10.1016/j.polymertesting.2014.09.004
[94] G. T. Howard, Biodegradation of polyurethane: a review. Int. Biodeterior. Biodegrad. 49 (2002) 245-252. https://doi.org/10.1016/S0964-8305(02)00051-3
[95] S. Egger, R. P. Lehmann, M. J. Height, M. J. Loessner, M. Schuppler, Antimicrobial properties of a novel silver-silica nanocomposite material. Appl. Environ. Microbiol. 75 (2009) 2973-2976. https://doi.org/10.1128/AEM.01658-08
[96] M. A. Pérez-Limiñana, F. Arán-Aís, C. Orgilés-Barceló, Waterborne Polyurethane Adhesives Based on Gelatine-Stabilized AgNPs with Improved Antimicrobial Properties. J. Adhes. 90 (2014) 860-876. https://doi.org/10.1080/00218464.2014.884462
[97] D. Turan, G. Gunes, F. Seniha Güner, Synthesis, characterization and O2 permeability of shape memory polyurethane films for fresh produce packaging. Packag. Technol. Sci. 29 (2016) 415-427. https://doi.org/10.1002/pts.2222
[98] M. M. Rahman, Improvements of antimicrobial and barrier properties of waterborne polyurethane containing hydroxyapatite-silver nanoparticles. J. Adhes. Sci. Technol. 31 (2017) 613-626. https://doi.org/10.1080/01694243.2016.1228744
[99] M. Liu, Z. Jia, D. Jia, C. Zhou, Recent advance in research on halloysite nanotubes-polymer nanocomposite. Prog. Polym. Sci. 39 (2014) 1498-1525. https://doi.org/10.1016/j.progpolymsci.2014.04.004
[100] H. Fu, Y. Wang, X. Li, W. Chen, Synthesis of vegetable oil-based waterborne polyurethane/silver-halloysite antibacterial nanocomposites. Compos. Sci. Technol. 126 (2016) 86-93. https://doi.org/10.1016/j.compscitech.2016.02.018
[101] W. S. Han, Synthesis and characterization of hyperbranched waterborne polyurethane/Ag nanoparticle composites. Polym. Compos. 2016.
[102] M. Akbarian, M. E. Olya, M. Ataeefard, M. Mahdavian, The influence of nanosilver on thermal and antibacterial properties of a 2 K waterborne polyurethane coating. Prog.Org. Coat. 75 (2012) 344-348. https://doi.org/10.1016/j.porgcoat.2012.07.017
[103] P. K. Jain, X. Huang, I. H. El-Sayed, M. A. El-Sayed, Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc. Chem. Res. 41 (2008) 1578-1586. https://doi.org/10.1021/ar7002804
[104] N. Lindenblatt, M. D. Menger, E. Klar, B. Vollmar, Darbepoetin-alpha does not promote microvascular thrombus formation in mice: role of eNOS-dependent protection through platelet and endothelial cell deactivation. Arterioscler. Thromb. Vasc. Biol. 27 (2007) 1191-1198. https://doi.org/10.1161/ATVBAHA.107.141580
[105] M. R. Abid, S. Guo, T. Minami, K. C. Spokes, K. Ueki, C. Skurk,… W. C. Aird, Vascular endothelial growth factor activates PI3K/Akt/forkhead signaling in endothelial cells. Arterioscler. Thromb. Vasc. Biol. 24 (2004) 294-300. https://doi.org/10.1161/01.ATV.0000110502.10593.06
[106] J. Doukas, W. Wrasidlo, G. Noronha, E. Dneprovskaia, R. Fine, S. Weis,… D. Cheresh, Phosphoinositide 3-kinase γ/δ inhibition limits infarct size after myocardial ischemia/reperfusion injury. Proc. Natl. Acad. Sci. 103 (2006) 19866-19871. https://doi.org/10.1073/pnas.0606956103
[107] Y. Feng, V. J. Venema, R. C. Venema, N. Tsai, R. B. Caldwell, VEGF induces nuclear translocation of Flk-1/KDR, endothelial nitric oxide synthase, and caveolin-1 in vascular endothelial cells. Biochem. Biophys. Res. Commun. 256 (1999) 192-197. https://doi.org/10.1006/bbrc.1998.9790
[108] H. S. Hung, C. C. Wu, S. Chien, S. H. Hsu, The behavior of endothelial cells on polyurethane nanocomposites and the associated signaling pathways. Biomaterials. 30 (2009) 1502-1511. https://doi.org/10.1016/j.biomaterials.2008.12.003
[109] J. G. Han, Y. Q. Xiang, Y. Zhu, New Antibacterial Composites: Waterborne Polyurethane/Gold Nanocomposites Synthesized Via Self-Emulsifying Method. J. Inorg. Organomet. Polym. Mater. 24 (2014) 283-290. https://doi.org/10.1007/s10904-013-9965-z
[110] P. B. Messersmith, E. P. Giannelis, Synthesis and characterization of layered silicate-epoxy nanocomposites. Chem. Mater. 6 (1994) 1719-1725. https://doi.org/10.1021/cm00046a026
[111] Z. Wang, T. J. Pinnavaia, Nanolayer reinforcement of elastomeric polyurethane. Chem. Mater. 10 (1998) 3769-3771. https://doi.org/10.1021/cm980448n
[112] J. Massam, T. J. Pinnavaia, Clay nanolayer reinforcement of a glassy epoxy polymer. MRS Online Proceedings Library Archive. 520 (1998).
[113] J. W. Gilman, Flammability and thermal stability studies of polymer layered-silicate (clay) nanocomposites1. Appl. Clay Sci. 15 (1999) 31-49. https://doi.org/10.1016/S0169-1317(99)00019-8
[114] H. T. Lee, L. H. Lin, Waterborne polyurethane/clay nanocomposites: novel effects of the clay and its interlayer ions on the morphology and physical and electrical properties. Macromolecules. 39 (2006) 6133-6141. https://doi.org/10.1021/ma060621y
[115] M. M. Rahman, H. J. Yoo, C. J. Mi, H. D. Kim, Synthesis and characterization of waterborne polyurethane/clay nanocomposite–effect on adhesive strength. Macromol. Symp. 249 (2007) 251-258. https://doi.org/10.1002/masy.200750341
[116] M. M. Rahman, H. D. Kim, W. K. Lee, Preparation and characterization of waterborne polyurethane/clay nanocomposite: effect on water vapor permeability. J. Appl. Polym. Sci. 110 (2008) 3697-3705. https://doi.org/10.1002/app.28985
[117] S. Subramani, J. Y. Lee, S. W. Choi, J. H. Kim, Waterborne trifunctionalsilane‐terminated polyurethane nanocomposite with silane‐modified clay. J. Polym. Sci., Part B: Polym. Phys. 45 (2007) 2747-2761. https://doi.org/10.1002/polb.21285
[118] J. M. Yeh, C. T. Yao, C. F. Hsieh, L. H. Lin, P. L. Chen, J. C. Wu, C. P. Wu, Preparation, characterization and electrochemical corrosion studies on environmentally friendly waterborne polyurethane/Na+-MMT clay nanocomposite coatings. Eur. Polym. J. 44 (2008) 3046-3056. https://doi.org/10.1016/j.eurpolymj.2008.05.037
[119] L. Peng, L. Zhou, Y. Li, F. Pan, S. Zhang, Synthesis and properties of waterborne polyurethane/attapulgite nanocomposites. Compos. Sci. Technol. 71 (2011) 1280-1285. https://doi.org/10.1016/j.compscitech.2011.04.012
[120] M. Paillet, A. Dufresne, Chitin whisker reinforced thermoplastic nanocomposites. Macromolecules. 34 (2001) 6527-6530. https://doi.org/10.1021/ma002049v
[121] M. A. S. Azizi Samir, F. Alloin, A. Dufresne, Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules. 6 (2005) 612-626. https://doi.org/10.1021/bm0493685
[122] M. Matos Ruiz, J. Y. Cavaille, A. Dufresne, J. F. Gerard, C. Graillat, Processing and characterization of new thermoset nanocomposites based on cellulose whiskers. Compos. Interface. 7 (2000) 117-131. https://doi.org/10.1163/156855400300184271
[123] Q. Zhao, S. Wang, X. Cheng, R. C. Yam, D. Kong, R. K. Li, Surface Modification of Cellulose Fiber via Supramolecular Assembly of Biodegradable Polyesters by the Aid of Host− Guest Inclusion Complexation. Biomacromolecules. 11 (2010) 1364-1369. https://doi.org/10.1021/bm100140n
[124] X. Cao, H. Dong, C. M. Li, New nanocomposite materials reinforced with flax cellulose nanocrystals in waterborne polyurethane. Biomacromolecules. 8 (2007) 899-904. https://doi.org/10.1021/bm0610368
[125] Z. Gao, J. Peng, T. Zhong, J. Sun, X. Wang, C. Yue, Biocompatible elastomer of waterborne polyurethane based on castor oil and polyethylene glycol with cellulose nanocrystals. Carbohydr Polym. 87 (2012) 2068-2075. https://doi.org/10.1016/j.carbpol.2011.10.027
[126] A. Santamaria-Echart, L. Ugarte, C. García-Astrain, A. Arbelaiz, M. A. Corcuera, A. Eceiza, Cellulose nanocrystals reinforced environmentally-friendly waterborne polyurethane nanocomposites. Carbohydr Polym. 151 (2016) 1203-1209. https://doi.org/10.1016/j.carbpol.2016.06.069
[127] C. J. Silva, Q. Zhang, J. Shen, A. Cavaco-Paulo, Immobilization of proteases with a water soluble–insoluble reversible polymer for treatment of wool. Enzyme Microb. Technol. 39 (2006) 634-640. https://doi.org/10.1016/j.enzmictec.2005.11.016
[128] J. Zhang, S. B. Zhao, H. H. Luo, Analysis and estimate of shrink-proof finish methods of wool? Journal ofWuhan Textile S.h.t. Institute, 10 (1997) 80–83.
[129] Q. Zhao, G. Sun, K. Yan, A. Zhou, Y. Chen, Novel bio-antifelting agent based on waterborne polyurethane and cellulose nanocrystals. Carbohydr Polym. 91 (2013) 169-174. https://doi.org/10.1016/j.carbpol.2012.08.020
[130] H. Liu, J. Song, S. Shang, Z. Song, D. Wang, Cellulose nanocrystal/silver nanoparticle composites as bifunctional nanofillers within waterborne polyurethane. ACS Appl. Mater. Interfaces. 4 (2012) 2413-2419. https://doi.org/10.1021/am3000209
[131] G. M. Wu, J. Chen, S. P. Huo, G. F. Liu, Z. W. Kong, Thermoset nanocomposites from two-component waterborne polyurethanes and cellulose whiskers. Carbohydr Polym. 105 (2014) 207-213. https://doi.org/10.1016/j.carbpol.2014.01.095
[132] L. Jiang, J. Zhang, M. P. Wolcott, Comparison of polylactide/nano-sized calcium carbonate and polylactide/montmorillonite composites: reinforcing effects and toughening mechanisms. Polymer. 48 (2007) 7632-7644. https://doi.org/10.1016/j.polymer.2007.11.001
[133] N. Lin, J. Huang, P. R. Chang, D. P. Anderson, J. Yu, Preparation, modification, and application of starch nanocrystals in nanomaterials: a review. J. Nanomater. (2011) 20. https://doi.org/10.1155/2011/573687
[134] J. Zou, F. Zhang, J. Huang, P. R. Chang, Z. Su, J. Yu, Effects of starch nanocrystals on structure and properties of waterborne polyurethane-based composites. Carbohydr Polym. 85 (2011) 824-831. https://doi.org/10.1016/j.carbpol.2011.04.006
[135] P. R. Chang, F. Ai, Y. Chen, A. Dufresne, J. Huang, Effects of starch nanocrystal‐graft‐polycaprolactone on mechanical properties of waterborne polyurethane‐based nanocomposites. J. Appl. Polym. Sci. 111 (2009) 619-627.
[136] Y. Wang, H. Tian, L. Zhang, Role of starch nanocrystals and cellulose whiskers in synergistic reinforcement of waterborne polyurethane. Carbohydr Polym. 80 (2010) 665-671. https://doi.org/10.1016/j.carbpol.2009.10.043
[137] N. Yousefi, M. M. Gudarzi, Q. Zheng, X. Lin, X. Shen, J. Jia, … J. K. Kim, Highly aligned, ultralarge-size reduced graphene oxide/polyurethane nanocomposites: mechanical properties and moisture permeability. Compos Part A: Appl. Sci. Manuf. 49 (2013) 42-50. https://doi.org/10.1016/j.compositesa.2013.02.005
[138] S. Wu, T. Shi, L. Zhang, Preparation and properties of amine-functionalized reduced graphene oxide/waterborne polyurethane nanocomposites. ‎High Perform. Polym. 28 (2016) 453-465. https://doi.org/10.1177/0954008315587124
[139] J. Hu, F. Zhang, Self-assembled fabrication and flame-retardant properties of reduced graphene oxide/waterborne polyurethane nanocomposites. J. Therm. Anal. Calorim. 118 (2014) 1561-1568. https://doi.org/10.1007/s10973-014-4078-7
[140] Y. Li, Z. Yang, H. Qiu, Y. Dai, Q. Zheng, J. Li, J. Yang, Self-aligned graphene as anticorrosive barrier in waterborne polyurethane composite coatings. J. Mater. Chem. A. 2 (2014) 14139-14145. https://doi.org/10.1039/C4TA02262A
[141] C. X. Zhao, W. D. Zhang, D. C. Sun, Preparation and mechanical properties of waterborne polyurethane/carbon nanotube composites. Polym. Compos. 30 (2009) 649-654. https://doi.org/10.1002/pc.20609
[142] M. M. Rahman, R. Suleiman, H. Do Kim, Effect of functionalized multiwalled carbon nanotubes on weather degradation and corrosion of waterborne polyurethane coatings. Korean J. Chem. Eng. 34 (2017) 2480-2487. https://doi.org/10.1007/s11814-017-0145-7
[143] M. M. Rahman, E. Y. Kim, K. T. Lim, W. K. Lee, Morphology and properties of waterborne polyurethane/CNT nanocomposite adhesives with various carboxyl acid salt groups. J. Adhes. Sci. Technol. 23 (2009) 839-850. https://doi.org/10.1163/156856109X411210