Hybrid Bast Fibre Strengthened Thermoset Composites


Hybrid Bast Fibre Strengthened Thermoset Composites

Sekhar Das, Shantanu Basak, Pintu Pandit, Amiya Kr. Singha

Flax, jute, hemp, kenaf, and ramie are well-known bast fibres which gain popularity nowadays due to its gaining popularity as renewable, environmentally friendly, and biodegradable raw material for textiles, industrial applications, pulp, and paper as well as for composite applications. Bast fibres have been serving as a traditional reinforcing material of human society since the prehistoric age. Bast fiber-reinforced thermoset composites gain popularity in various fields from household articles to automobiles. The prime advantages of bast fibers over manmade fibers have been their low cost, light weight, high specific strength, renewability, and biodegradability. Bast fibre has some drawbacks such as high moisture absorption, poor dimensional stability and poor wettability that makes it incompatible with hydrophobic resins. Some surface modification treatments are described in this chapter to overcome the limitation of bast fibres as reinforcement materials.

Bast fibres, Composite, Surface Modification, Mechanical Property

Published online 10/1/2018, 16 pages

DOI: http://dx.doi.org/10.21741/9781945291876-5

Part of the book on Thermoset Composites

[1] www. https://en.wikipedia.org/wiki/Bast_fibre.
[2] A. V Kiruthika, A review on physico-mechanical properties of bast fibre reinforced polymer composites, J. Build. Eng. 9 (2017) 91–99. https://doi.org/10.1016/j.jobe.2016.12.003
[3] J. Wiener, V. Kovačič, P. Dejlová, Differences between flax and hemp, AUTEX Res. J. 3 (2003) 58–63.
[4] P. V Joseph, K. Joseph, S. Thomas, Short sisal fiber reinforced polypropylene composites: the role of interface modification on ultimate properties, Compos. Interfaces. 9 (2002) 171–205. https://doi.org/10.1163/156855402760116094
[5] L. Chen, B. Wang, J. Chen, X. Ruan, Y. Yang, Characterization of dimethyl sulfoxide-treated wool and enhancement of reactive wool dyeing in non-aqueous medium, Text. Res. J. 86 (2016) 533–542. https://doi.org/10.1177/0040517515591784
[6] A.K. Mohanty, M. Misra, L.T. Drzal, Surface modifications of natural fibers and performance of the resulting biocomposites: an overview, Compos. Interfaces. 8 (2001) 313–343. https://doi.org/10.1163/156855401753255422
[7] A.K. Bledzki, S. Reihmane, J. Gassan, Properties and modification methods for vegetable fibers for natural fiber composites, J. Appl. Polym. Sci. 59 (1996) 1329–1336. https://doi.org/10.1002/(SICI)1097-4628(19960222)59:8<1329::AID-APP17>3.0.CO;2-0
[8] N. Maneerat, N. Tangsuphoom, A. Nitithamyong, Effect of extraction condition on properties of pectin from banana peels and its function as fat replacer in salad cream, J. Food Sci. Technol. 54 (2017) 386–397. https://doi.org/10.1007/s13197-016-2475-6
[9] Q.F. Sun, Y. Lu, Y.Z. Xia, D.J. Yang, J. Li, Y.X. Liu, Flame retardancy of wood treated by TiO2/ZnO coating, Surf. Eng. 28 (2012) 555–559. https://doi.org/10.1179/1743294412Y.0000000027
[10] N. Chand, S.A.R. Hashmi, Mechanical properties of sisal fibre at elevated temperatures, J. Mater. Sci. 28 (1993) 6724–6728. https://doi.org/10.1007/BF00356422
[11] A. Shukla, S. Basak, S.W. Ali, R. Chattopadhyay, Development of fire retardant sisal yarn, Cellulose. 24 (2017) 423–434. https://doi.org/10.1007/s10570-016-1115-7
[12] S. Das, M. Bhowmick, S.K. Chattopadhyay, S. Basak, Application of biomimicry in textiles, Curr. Sci. 109 (2015) 893–901. https://doi.org/10.18520/cs/v109/i5/893-901
[13] S. Das, S. Basak, M. Bhowmick, S.K. Chattopadhyay, M.G. Ambare, Waste paper as a cheap source of natural fibre to reinforce polyester resin in production of bio-composites, J. Polym. Eng. 36 (2016) 441–447. https://doi.org/10.1515/polyeng-2015-0263
[14] S. Basak, K.K. Samanta, S.K. Chattopadhyay, P. Pandit, S. Maiti, Green fire retardant finishing and combined dyeing of proteinous wool fabric, Color. Technol. 132 (2016). https://doi.org/10.1111/cote.12200
[15] M.D. Teli, P. Pandit, Novel method of ecofriendly single bath dyeing and functional finishing of wool protein with coconut shell extract biomolecules, ACS Sustain. Chem. Eng. (2017). https://doi.org/10.1021/acssuschemeng.7b02078
[16] M.D. Teli, P. Pandit, Development of thermally stable and hygienic colored cotton fabric made by treatment with natural coconut shell extract, J. Ind. Text. (2017) 1528083717725113.
[17] M.D. Teli, P. Pandit, S. Basak, Coconut shell extract imparting multifunction properties to ligno- cellulosic material, (n.d.) 1–30. https://doi.org/10.1177/1528083716686937
[18] S. Das, Mechanical and water swelling properties of waste paper reinforced unsaturated polyester composites, Constr. Build. Mater. 138 (2017) 469–478. https://doi.org/10.1016/j.conbuildmat.2017.02.041
[19] L. Ammayappan, S. Das, R. Guruprasad, D.P. Ray, P.K. Ganguly, Effect of lac treatment on mechanical properties of jute fabric/polyester resin based biocomposite, (2016).
[20] S. Das, N. Shanmugam, A. Kumar, S. Jose, Potential of biomimicry in the field of textile technology, Bioinspired, Biomim. Nanobiomaterials. 6 (2017) 224–235. https://doi.org/10.1680/jbibn.16.00048
[21] Das S. Mechanical properties of waste paper/jute fabric reinforced polyester resin matrix hybrid composites. Carbohydr Polym 2017;172:60–7. https://doi.org/10.1016/j.carbpol.2017.05.036
[22] J. Van der Geer, J.A.J. Hanraads, R.A. Lupton, Clean Energy Project Analysis: Retscreen® Engineering & Cases Textbook, Small Hydro Project Analysis Chapter. J Sci Commun 163 (2000) 51–59.
[23] M.M. Kabir, H. Wang, K.T. Lau, F. Cardona, Chemical treatments on plant-based natural fibre reinforced polymer composites: An overview, Compos. Part B Eng. 43 (2012) 2883–2892. https://doi.org/10.1016/j.compositesb.2012.04.053
[24] S. Debnath, C.W. Nguong, S.N.B. Lee, A review on natural fibre reinforced polymer composites, World Acad. Sci. Eng. Technol. (2013) 1123–1130.
[25] L.T. Drzal, M. Madhukar, Fibre-matrix adhesion and its relationship to composite mechanical properties, J. Mater. Sci. 28 (1993) 569–610. https://doi.org/10.1007/BF01151234
[26] A.K. Bledzki, S. Reihmane, J. Gassan, Properties and modification methods for vegetable fibres for natural fibre composites, J Appl Polym Sci. 59 (1996) 1329–1336. https://doi.org/10.1002/(SICI)1097-4628(19960222)59:8<1329::AID-APP17>3.0.CO;2-0
[27] M.M. Hassan, M.H. Wagner, Surface Modification of Natural Fibers for Reinforced Polymer Composites, Prog. Adhes. Adhes. (2017) 1–44.
[28] P.K. Ray, A.C. Chakravarty, S.B. Bandyopadhaya, Fine structure and mechanical properties of jute differently dried after retting, J. Appl. Polym. Sci. 20 (1976) 1765–1767. https://doi.org/10.1002/app.1976.070200705
[29] D. Zhang, L.C. Wadsworth, Corona treatment of polyolefin films—a review, Adv. Polym. Technol. 18 (1999) 171–180. https://doi.org/10.1002/(SICI)1098-2329(199922)18:2<171::AID-ADV6>3.0.CO;2-8
[30] J. Gassan, V.S. Gutowski, Effects of corona discharge and UV treatment on the properties of jute-fibre epoxy composites, Compos. Sci. Technol. 60 (2000) 2857–2863. https://doi.org/10.1016/S0266-3538(00)00168-8
[31] M.N. Belgacem, P. Bataille, S. Sapieha, Effect of corona modification on the mechanical properties of polypropylene/cellulose composites, J. Appl. Polym. Sci. 53 (1994) 379–385. https://doi.org/10.1002/app.1994.070530401
[32] M.J. Shenton, M.C. Lovell-Hoare, G.C. Stevens, Adhesion enhancement of polymer surfaces by atmospheric plasma treatment, J. Phys. D. Appl. Phys. 34 (2001) 2754. https://doi.org/10.1088/0022-3727/34/18/307
[33] X. Yuan, K. Jayaraman, D. Bhattacharyya, Effects of plasma treatment in enhancing the performance of woodfibre-polypropylene composites, Compos. Part A Appl. Sci. Manuf. 35 (2004) 1363–1374. https://doi.org/10.1016/j.compositesa.2004.06.023
[34] X. Yuan, K. Jayaraman, D. Bhattacharyya, Mechanical properties of plasma-treated sisal fibre-reinforced polypropylene composites, J. Adhes. Sci. Technol. 18 (2004) 1027–1045. https://doi.org/10.1163/1568561041257478
[35] A. Baltazar-y-Jimenez, M. Bistritz, E. Schulz, A. Bismarck, Atmospheric air pressure plasma treatment of lignocellulosic fibres: Impact on mechanical properties and adhesion to cellulose acetate butyrate, Compos. Sci. Technol. 68 (2008) 215–227. https://doi.org/10.1016/j.compscitech.2007.04.028
[36] A. Valadez-Gonzalez, J.M. Cervantes-Uc, R. Olayo, P.J. Herrera-Franco, Effect of fiber surface treatment on the fiber–matrix bond strength of natural fiber reinforced composites, Compos. Part B Eng. 30 (1999) 309–320. https://doi.org/10.1016/S1359-8368(98)00054-7
[37] A. Jähn, M.W. Schröder, M. Füting, K. Schenzel, W. Diepenbrock, Characterization of alkali treated flax fibres by means of FT Raman spectroscopy and environmental scanning electron microscopy, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 58 (2002) 2271–2279. https://doi.org/10.1016/S1386-1425(01)00697-7
[38] D.S. Varma, M. Varma, I.K. Varma, Coir fibers: Part I: Effect of physical and chemical treatments on properties, Text. Res. J. 54 (1984) 827–832. https://doi.org/10.1177/004051758405401206
[39] X. Li, L.G. Tabil, S. Panigrahi, Chemical treatments of natural fiber for use in natural fiber-reinforced composites: a review, J. Polym. Environ. 15 (2007) 25–33. https://doi.org/10.1007/s10924-006-0042-3
[40] A.K. Mohanty, S. Parija, M. Misra, Ce (IV)‐N‐acetylglycine initiated graft copolymerization of acrylonitrile onto chemically modified pineapple leaf fibers, J. Appl. Polym. Sci. 60 (1996) 931–937. https://doi.org/10.1002/(SICI)1097-4628(19960516)60:7<931::AID-APP2>3.0.CO;2-N
[41] P.C. Tripathy, M. Misra, S. Parija, S. Mishra, A.K. Mohanty, Studies of Cu (II)–IO4− initiated graft copolymerization of methyl methacrylate from defatted pineapple leaf fibres, Polym. Int. 48 (1999) 868–872. https://doi.org/10.1002/(SICI)1097-0126(199909)48:9<868::AID-PI230>3.0.CO;2-B
[42] P. Ghosh, P.K. Ganguly, Jute fibre-reinforced polyester resin composites: effect of different types and degrees of chemical modification of jute on performance of the composites, Plast. Rubber Compos. Process. Appl. 20 (1993) 171–177.
[43] A.K. Mohanty, M.A. Khan, S. Sahoo, G. Hinrichsen, Effect of chemical modification on the performance of biodegradable jute yarn-Biopol® composites, J. Mater. Sci. 35 (2000) 2589–2595. https://doi.org/10.1023/A:1004723330799
[44] C.A.S. Hill, H.P.S.A. Khalil, M.D. Hale, A study of the potential of acetylation to improve the properties of plant fibres, Ind. Crops Prod. 8 (1998) 53–63. https://doi.org/10.1016/S0926-6690(97)10012-7
[45] M.S. Sreekala, S. Thomas, Effect of fibre surface modification on water-sorption characteristics of oil palm fibres, Compos. Sci. Technol. 63 (2003) 861–869. https://doi.org/10.1016/S0266-3538(02)00270-1
[46] M.Z. Rong, M.Q. Zhang, Y. Liu, G.C. Yang, H.M. Zeng, The effect of fiber treatment on the mechanical properties of unidirectional sisal-reinforced epoxy composites, Compos. Sci. Technol. 61 (2001) 1437–1447. https://doi.org/10.1016/S0266-3538(01)00046-X
[47] A. Paul, K. Joseph, S. Thomas, Effect of surface treatments on the electrical properties of low-density polyethylene composites reinforced with short sisal fibers, Compos. Sci. Technol. 57 (1997) 67–79. https://doi.org/10.1016/S0266-3538(96)00109-1
[48] D. Maldas, B. V Kokta, C. Daneault, Influence of coupling agents and treatments on the mechanical properties of cellulose fiber–polystyrene composites, J. Appl. Polym. Sci. 37 (1989) 751–775. https://doi.org/10.1002/app.1989.070370313