Biosourced Thermosets for Lignocellulosic Composites

$20.00

Biosourced Thermosets for Lignocellulosic Composites

A. Pizzi

Recent developments and trends in the field thermoset binders for thermoset lignocellulosic composites are reviewed. The more recent developments in tannin thermoset binders without the use of aldehyde-yielding compounds and Lignin binders are discussed. The combination of these for natural environment-friendly matrices for non-woven fibre mats is also briefly reviewed. Topical developments in protein-based binders, such as soy protein thermosets are addressed. New trends in carbohydrate thermosets as modifiers of existing composite binders, by forming furanic compounds then used as building blocks are addressed as well. Epoxidized unsaturated vegetable oil thermoset binders for lignocellulosic composites are described and an example of cashew nut shell oil modified by ozonolysis to yield thermoset resins by self-condensation is explored.

Keywords
Biobased Thermosets, Biobased Adhesives, Wood Composites, Fibre Composites, Tannins, Lignins, Proteins, Carbohydrates, Unsaturated Oils, Cashew Nut Liquid, Cardanol

Published online 10/1/2018, 31 pages

DOI: http://dx.doi.org/10.21741/9781945291876-4

Part of the book on Thermoset Composites

References
[1] A. Pizzi, Advanced Wood Adhesives Technology, Marcel Dekker, New York, 1994
[2] A. Pizzi, Natural Phenolic Adhesives 2: Lignin, in A.Pizzi, K.L.Mittal (Eds.), Handbook of Adhesive Technology, 2nd Edition, Marcel Dekker, New York, 2003, pp. 589-598.
[3] S. Deng, G. Du, X. Li, .A. Pizzi, Performance and reaction mechanism of zero formaldehyde-emission urea-glyoxal (UG) resin, J.Taiwan Inst.Chem.Engineers, 45 (2014) 2029-2038. https://doi.org/10.1016/j.jtice.2014.02.007
[4] H. Petersen, Process for the production of formaldehyde-free finishing agents for cellulosic textiles and the use of such agents, Textilveredlung 2 (1968) 51-62.
[5] J. Zhang, H. Chen, A. Pizzi, Y. Li, Q. Gao, J. Li, Characterisation and application of urea-formaldehyde-furfural co-condensed resins as wood adhesives, BioResources 9 (2014) 6267-6276. https://doi.org/10.15376/biores.9.4.6267-6276
[6] Y.F. Zhang, X.R. Zeng, B.Y. Ren, Synthesis and structural characterization of urea-isobutyraldehyde-formaldehyde resins, J.Coatings Technol.Res. 6 (2009) 337-344. https://doi.org/10.1007/s11998-008-9126-4
[7] S. Deng, A. Pizzi, G. Du, Jizhi Zhang, Jun Zhang, Synthesis and chemical structure of a novel glyoxal-urea-formaldehyde (GUF) co-condensed resins with different MMU/G molar ratios by 13CNMR and MALDI-TOF-MS, J.Appl.Polym.Sci. (2014). https://doi.org/10.1002/app.41009
[8] E.E. Novotny and W.W. Johnson, U.S. Patent 1,827,824 (1931).
[9] S. Deng, A. Pizzi, G. Du, M.C. Lagel, L. Delmotte, S. Abdalla, Synthesis, structure characterization and application of melamine-glyoxal adhesive resins, Eur.J.Wood Prod. 76 (2018) 283-296. https://doi.org/10.1007/s00107-017-1184-9
[10] X. Xi, A. Pizzi, S. Amirou, Melamine-Glyoxal-Glutaraldehyde wood panel adhesives without formaldehyde, Polymers, 10 (2018) 22: 1-18.
[11] E. Kulvik, Chestnut wood tannin extract in plywood adhesives, Adhesives Age 19 (1976) 19-21.
[12] S. Spina, X. Zhou, C. Segovia, A. Pizzi, M. Romagnoli, S. Giovando, H. Pasch, K. Rode, L .Delmotte,,Phenolic resin adhesives based on chestnut hydrolysable tannins, J.Adh.Sci.Technol. 27 (2013) 2103-2111. https://doi.org/10.1080/01694243.2012.697673
[13] A. Pizzi, Tannin based adhesives, in A. Pizzi (Ed.), Wood Adhesives Chemistry and Technology, Vol. I, Marcel Dekker, New York, 1983, pp. 177-246.
[14] A. Pizzi, Natural Phenolic Adhesives 1: Tannin, in A.Pizzi, K.L.Mittal (Eds.), Handbook of Adhesive Technology, 2nd Edition, Marcel Dekker, New York, 2003, pp.573-588. https://doi.org/10.1201/9780203912225.ch27
[15] S. Drovou, A. Pizzi, C. Lacoste, J. Zhang, S. Abdalla, F.M. Al-Marzouki, Flavonoid tannins linked to long carbohydrate chains – MALDI ToF analysis of the tannin extract of the african locust bean. Ind.Crops Prod. 67 (2015) 25-32. https://doi.org/10.1016/j.indcrop.2015.01.004
[16] W.E. Hillis, G. Urbach, The reaction of (+) catechin with formaldehyde, J.Chem.Technol.Biotechnol. 9(1959), 474-482
[17] W.E. Hillis, G. Urbach, Reaction of polyphenols with formaldehyde, J.Chem.Technol.Biotechnol. 9(1959), 665-673.
[18] D.G. Roux, D. Ferreira, H.K.L. Hundt, E. Malan, Structure, stereochemistry, and reactivity of natural condensed tannins as basis for their extended industrial application. J.Appl.Polym.Sci., Appl.Polym.Symp. 28 (1975) 335-353.
[19] A. Trosa, A. Pizzi, A no-aldehyde emission hardener for tannin-based wood adhesives, Holz Roh Werkst., 59 (2001), 266-271. https://doi.org/10.1007/s001070100200
[20] A. Trosa, Développement et application industrielle de résines thermodurcissables à base de produits naturels de déchet et leur produits de copolymérisation avec des résines synthétiques pour application aux panneaux composites de bois, Ph.D. thesis, University Henri Poincaré – Nancy 1, Nancy, France (1999)
[21] A. Trosa, A. Pizzi, Industrial hardboard and other panels binder from tannin/furfuryl alcohol in absence of formaldehyde, Holz Roh Werkst. 56 (1998), 213-214. https://doi.org/10.1007/s001070050301
[22] A. Pizzi, Hardening mechanism of tannin adhesives with hexamine, Holz Roh Werkst. 52 (1994), 229. https://doi.org/10.1007/BF02619098
[23] F. Pichelin, C. Kamoun, A. Pizzi, Hexamine hardener behaviour – effects on wood glueing, tannin and other wood adhesives, Holz Roh Werkst. 57(1999), 305-317. https://doi.org/10.1007/s001070050349
[24] C. Kamoun, A. Pizzi, Mechanism of hexamine as a non-aldehyde polycondensation hardener, Holzforschung Holzverwertung, 52(2000), 16-19.
[25] C. Kamoun, A. Pizzi, M. Zanetti, Upgrading of MUF resins by buffering additives – Part 1: hexamine sulphate effect and its limits, J.Appl.Polym.Sci. 90(2003), 203-214. https://doi.org/10.1002/app.12634
[26] J.F. Walker, Formaldehyde, Am.Chem.Soc.Monogr.Ser. 159, 1964.
[27] A. Pizzi, W. Roll, and B. Dombo, European patent EP-B 0 648 807 (1994); German patent DE 44 06 825 A1 (1995); USA patent 5,532,330 (1996)
[28] F. Pichelin, SWOOD unpublished results, 2004
[29] A. Pizzi, Chemistry and technology of cold-and thermosetting tannin-based exterior wood adhesives, Ph.D Thesis , University of the Orange Free State, Bloemfontein, South Africa, 1978.
[30] A. Pizzi, J. Valenzuela, C. Westermeyer, Low-formaldehyde emission, fast pressing, pine and pecan tannin adhesives for exterior particleboard, Holz Roh Werkst., 52 (1994), 311-315. https://doi.org/10.1007/BF02621421
[31] F.J. Santiago-Medina, G. Foyer, A. Pizzi, S. Calliol, L. Delmotte, Lignin-derived non-toxic aldehydes for ecofriendly tannin adhesives for wood panels, Int.J.Adhesion Adhesives, 70 (2016), 239-248. https://doi.org/10.1016/j.ijadhadh.2016.07.002
[32] A. Ballerini, A. Despres, A. Pizzi, Non-toxic, zero-emission tannin-glyoxal adhesives for wood panels, Holz Roh Werkst., 63 (2005), 477-478. https://doi.org/10.1007/s00107-005-0048-x
[33] R. Böhm, M. Hauptmann, A. Pizzi, C. Friederich, M.-P. Laborie, The chemical, kinetic and mechanical characterization of tannin-based adhesives with different crosslinking systems, Int.J.Adhesion Adhesives, 68 (2016), 1-8. https://doi.org/10.1016/j.ijadhadh.2016.01.006
[34] N.Meikleham, A. Pizzi, Acid and alkali-setting tannin-based rigid foams, J.Appl.Polym.Sci. 53 (1994), 1547-1556. https://doi.org/10.1002/app.1994.070531117
[35] C. Lacoste, A. Pizzi, M.C. Basso, M.-P. Laborie, A. Celzard, Pinus pinaster tannin/furanic foams: Part 1, Formulation, Ind.Crops Prod. 52 (2014) 450-456. https://doi.org/10.1016/j.indcrop.2013.10.044
[36] U.H.B. Abdullah, A. Pizzi, Tannin-furfuryl alcohol wood panel adhesives without formaldehyde, Eur.J.Wood Prod. 71 (2013), 131-132. https://doi.org/10.1007/s00107-012-0629-4
[37] P. Luckeneder, J. Gavino, R. Kuchernig, A. Petutschnigg, G. Tondi, Sustainable phenolic fractions as basis for furfuryl alcohol-based co-polymers and their use as wood adhesives, Polymers, 8 (2016), 396, 1-15.
[38] N. Meikleham, A. Pizzi, A. Stephanou, Induced accelerated autocondensation of polyflavonoid tannins for phenolic polycondensates, Part 1: 13C NMR, 29Si NMR, X-ray and polarimetry studies and mechanism, J.Appl.Polym.Sci. 54 (1994), 1827-1845. https://doi.org/10.1002/app.1994.070541206
[39] A. Pizzi, A. Stephanou, Comparative and differential behaviour of pine vs. pecan nut tannin adhesives for particleboard, Holzforschung Holzverwertung, 45 (1993), 30-33.
[40] A. Pizzi, N. Meikleham, Induced accelerated autocondensation of polyflavonoid tannins for phenolic polycondensates – Part III: CP-MAS 13C NMR of different tannins and models, J.Appl.Polym.Sci. 55 (1995), 1265-1269. https://doi.org/10.1002/app.1995.070550812
[41] A. Pizzi, N. Meikleham, A. Stephanou, Induced accelerated autocondensation of polyflavonoid tannins for phenolic polycondensates – Part II: cellulose effect and application, J.Appl.Polym.Sci. 55 (1995), 929 – 933. https://doi.org/10.1002/app.1995.070550611
[42] A. Pizzi, N. Meikleham, B. Dombo, W. Roll, Autocondensation-based, zero-emission, tannin adhesives for particleboard, Holz Roh Werkst. 53 (1995), 201-204. https://doi.org/10.1007/BF02716424
[43] R. Garcia, A. Pizzi, A. Merlin, Ionic polycondensation effects on the radical autocondensation of polyflavonoid tannins-An ESR study, J.Appl.Polym.Sci., 65 (1997), 2623-2632. https://doi.org/10.1002/(SICI)1097-4628(19970926)65:13<2623::AID-APP4>3.0.CO;2-D
[44] R. Garcia, A. Pizzi, Polycondensation and autocondensation networks in polyflavonoid tannins, Part 1: final networks, J.Appl.Polym.Sci. 70 (1998), 1083-1091. https://doi.org/10.1002/(SICI)1097-4628(19981107)70:6<1083::AID-APP5>3.0.CO;2-K
[45] R. Garcia, A. Pizzi, Polycondensation and autocondensation networks in polyflavonoid tannins, Part 2: polycondensation vs. autocondensation, J.Appl.Polym.Sci. 70 (1998), 1093 – 1110. https://doi.org/10.1002/(SICI)1097-4628(19981107)70:6<1093::AID-APP6>3.0.CO;2-J
[46] H. Yamaguchi, Japan patent 2004-143385 (2004)
[47] A. Pizzi, R. Kueny, F. Lecoanet, B. Masseteau, D. Carpentier, A. Krebs, F. Loiseau, S. Molina, M. Ragoubi, High resin content natural matrix-natural fibre biocomposites, Ind.Crops Prod., 30 (2009), 235-240. https://doi.org/10.1016/j.indcrop.2009.03.013
[48] P. Blanchet, A. Cloutier, B. Riedl, Particleboard made from hammer milled black spruce bark residues, Wood Sci.Technol. 34 (2000), 11-19. https://doi.org/10.1007/s002260050003
[49] F. Lopez-Suevos, B. Riedl, Effects of Pinus pinaster bark extracts content on the cure properties of tannin-modified adhesives and on bonding of exterior grade MDF, J.Adhesion Sci.Technol. 17 (2003), 1507-1522. https://doi.org/10.1163/156856103769207374
[50] S. Kim, H.-J. Kim, Curing behavior and viscoelastic properties of pine and wattle tannin-based adhesives studied by dynamic mechanical thermal analysis and FT-IR-ATR spectroscopy, J.Adhesion Sci.Technol. 17 (2003), 1369-1384. https://doi.org/10.1163/156856103769172797
[51] L.R. Calvé, Fast cure and pre-cure resistant cross-linked phenol-formaldehyde adhesives and methods of making same. Can. Pat. 2042476 (1999)
[52] K. Shimatani, Y. Sono, T. Sasaya, Preparation of moderate-temperature setting adhesives from softwood kraft lignin. Part 2. Effect of some factors on strength properties and characteristics of lignin-based adhesives, Holzforschung 48 (1994), 337-342. https://doi.org/10.1515/hfsg.1994.48.4.337
[53] D. Gardner, T. Sellers Jr., Formulation of a lignin-based plywood adhesive from steam-exploded mixed hardwood lignin, Forest Prod.J. 36 (1986), 61-67.
[54] W.H. Newman, W.G. Glasser, Engineering plastics from lignin-XII. Synthesis and performance of lignin adhesives with isocyanate and melamine, Holzforschung, 39 (1985), 345-353. https://doi.org/10.1515/hfsg.1985.39.6.345
[55] V.I.Azarov, N.N.Koverniskii, G.V.Zaitseva, Izvestjia Vysshikh Uchnykh Zavedenii, Lesnai Zhurnal, 5, 81-83 (1985), in A. Pizzi, Types, processing and properties of bioadhesives for wood and fibers, in Advances in Biorefineries, Chapter 23, Woodhead publishing, 2014, pp. 736-770.
[56] L. Viikari, A. Hase, P. Quintus-Leina, K. Kataja, S. Tuominen and L. Gadda, European Patent EP 95030 A1 (1999)
[57] H.H. Nimz, Lignin-based adhesives, in A.Pizzi (Ed.), Wood Adhesives Chemistry and Technology, Vol. 1, Marcel Dekker, New York, 1983, pp. 247-288.
[58] H.H. Nimz, G. Hitze, The application of spent sulfite liquor as an adhesive for particleboards, Cell.Chem.Technol. 14 (1980), 371-382.
[59] S. Valkonen, C. Hübsch, Lignin based binders: an industrial reality, latest developments, Wood Adhesives 2017, Forest Products Society, Atlanta, October 2017.
[60] K.C. Shen, Spent sulphite liquor binder for exterior waferboard, Forest Prod.J., 24 (1974), 38-44.
[61] K.C. Shen, Spent sulphite liquor binder for exterior waferboard., Part 2, Forest Prod.J., 27 (1977), 32-38.
[62] A. Kharazipour, A. Haars, M. Shekholeslami, A. Hüttermann, Enzymgebundene holzwerkstoffe auf der basis von lignin und phenoloxidasen, Adhäsion, 35 (1991), 30-36.
[63] A. Kharazipour, C. Mai, A. Hüttermann, Polyphenols for compounded materials, Polym.Degrad.Stabil. 59 (1998), 237-243. https://doi.org/10.1016/S0141-3910(97)00157-2
[64] C. Felby, L.S. Pedersen, B.R. Nielsen, Enhanced auto adhesion of wood fibers using phenol oxidases, Holzforschung, 51 (1997), 281-286. https://doi.org/10.1515/hfsg.1997.51.3.281
[65] A. Pizzi, A. Stephanou, Rapid curing lignins-based exterior wood adhesives, Part 1: diisocyanates reaction mechanisms and application to panel products, Holzforschung, 47 (1993), 439-445. https://doi.org/10.1515/hfsg.1993.47.5.439
[66] A. Pizzi, A. Stephanou, Rapid curing lignins-based exterior wood adhesives, Part 2: Acceleration mechanisms and application to panel products, Holzforschung, 47 (1993), 501-506. https://doi.org/10.1515/hfsg.1993.47.6.501
[67] P. Navarrete, H.R. Mansouri, A. Pizzi, S. Tapin-Lingua, B .Benjelloun-Mlayah, S. Rigolet, Synthetic-resin-free wood panel adhesives from low molecular mass lignin and tannin, J.Adhesion Sci.Technol. 24 (2010), 1597-1610. https://doi.org/10.1163/016942410X500972
[68] N. El-Mansouri, Q. Yuan, F. Huang, Characterization of alkaline lignins for use in phenol-formaldehyde and epoxy resins, BioResources, 6 (2011), 2647-2662.
[69] M.C .Lagel, A. Pizzi, A. Redl, Phenol-wheat protein-formaldehyde adhesives for wood-based panels, ProLigno. 10 (2014), 3-17; ,Eur.J.Wood Prods. 73 (2015), 439-448. https://doi.org/10.1007/s00107-015-0904-2
[70] Z. Zhong, X.S. Sun, D. Wang, J.A. Ratto, Wet strength and water resistance of modified soy protein adhesives and effects of drying treatment, J.Polym.Environm. 11(2003), 137-144. https://doi.org/10.1023/A:1026048213787
[71] Y. Liu, K. Li, Chemical modification of soy protein for wood adhesives, Macromol.Rapid Comm. 23(2002) 739-742. https://doi.org/10.1002/1521-3927(20020901)23:13<739::AID-MARC739>3.0.CO;2-0
[72] X. Sun, K. Bion, Shear strength and water resistance of modified soy protein adhesives, J.American Oil Chemists Soc. 76 (1999) 977-980. https://doi.org/10.1007/s11746-999-0115-2
[73] N.S. Hettiarachy, U. Kalapotly, D.J. Myers, Alkali-modified soy protein with improved adhesive and hydrophobic properties, J.American Oil Chemists Soc. 72 (1995), 1461-1464. https://doi.org/10.1007/BF02577838
[74] G.A. Amaral-Labat, A. Pizzi, A.R. Goncalves, A. Celzard, S. Rigolet, Environment-friendly soy flour-based resins without formaldehyde, J.Appl.Polym.Sci., 108 (2008), 624-632. https://doi.org/10.1002/app.27692
[75] H. Lei, A. Pizzi, P. Navarrete, S. Rigolet, A. Redl, A. Wagner, Gluten protein adhesives for wood panels, J.Adhesion Sci.Technol. 24 (2010), 1583-1596. https://doi.org/10.1163/016942410X500963
[76] J.M. Wescott, C.R. Frihart, L. Lorenz, Durable soy-based adhesives, Proceedings Wood Adhesives 2005, Forest Products Society, Madison, Wisconsin (2006)