Energy Absorption of Natural Fibre Reinforced Thermoset Polymer Composites Materials for Automotive Crashworthiness: A Review


Energy Absorption of Natural Fibre Reinforced Thermoset Polymer Composites Materials for Automotive Crashworthiness: A Review

Mohamed Alkateb, S.M. Sapuan, Z. Leman, M.R. Ishak, Mohammad Jawaid

Energy absorption capacity of composite materials is important in order to develop safety measurements for human beings in a car accident. Energy absorption, fiber type, matrix type, fiber structure, the shape of the pieces, processing conditions, are all important parameters. Changes in these parameters can cause particular subsequent changes in the energy absorption of the composite material of up to two times. Previous studies focused on how to introduce natural fibers into industrial applications and the replacement of synthetic fibres with natural fiber materials. In this paper, a detailed review of the energy absorption properties of the polymer composite material discussed. In order to understand the effects of certain parameters for the energy absorption capacity of a good composite material an attempt is made to classify the work in the field of energy absorption for composite materials that is published in the literature.

Energy Absorption, Thermoset Polymer, Natural Fiber, Axial Crush, Composite

Published online 10/1/2018, 32 pages


Part of the book on Thermoset Composites

[1] D.N. Saheb, J. Jog, Natural fiber polymer composites: a review, Advanced Polymer Technology. Vol.18 (1999) 351–363.<351::AID-ADV6>3.0.CO;2-X
[2] B.A. Cheeseman,T.A. Bogetti, Ballistic impact into fabric and compliant composite laminates, Composite Structures.Vol. 61 (2003) 161-173.
[3] E. Gooding, energy absorbing structure US Patent Specification Adaptive, (1999) 581-591.
[4] O. Faruk, A. K. Bledzki, H.P. Fink, M. Sain, Biocomposites reinforced with natural fibers: 2000–2010 (Progress in Polymer Science. Vol.37(11)( 2012) 1552–1596.
[5] H. Ku, H. Wang, N. Pattarachaiyakoop, M. Trada, A review on the tensile properties of natural fiber reinforced polymer composites, Composites Part B: Engineering. Vol.42 (2011) 856–873.
[6] A. Ticoalu, T. Aravinthan, F. Cardona, A review of current development in natural fiber composites for structural and infrastructure applications, in Proceedings of the Southern Region Engineering Conference (SREC), Toowoomba, Australia. Vol.10 ( 2010) 113–117.
[7] O. Faruk, A. K. Bledzki, H.P. Fink, M. Sain, Biocomposites reinforced with natural fibers: 2000–2010, Progress in Polymer Science .Vol.37 (2012) 1552–1596.
[8] F.Z. Arrakhiz, M. El Achaby, M. Malha, Mechanical and thermal properties of natural fibers reinforced polymer composites: doum/low density polyethylene, Materials & Design.Vol.43 (2013) 200–205.
[9] G. Di Bella, V. Fiore, G. Galtieri, C. Borsellino, A. Valenza, Effects of natural fibers reinforcement in lime plasters (kenaf and sisal vs. Polypropylene), Construction and Building Materials. Vol.58 (2014) 159–165.
[10] A. Shalwan, B.F. Yousif, In state of art: mechanical and tribological behaviour of polymeric composites based on natural fibers, Materials & Design. Vol.48 (2013) 14–24.
[11] M.A. Norul Izani, M. T. Paridah, U. M. K. Anwar, M. Y. Mohd Nor, P.S. H’Ng, Effects of fiber treatment on morphology, tensile and thermogravimetric analysis of oil palm empty fruit bunches fibers, Composites Part B: Engineering. Vol.45 (2013) 1251–1257.
[12] I.S.M. A. Tawakkal, M.J. Cran, S.W. Bigger, Effect of kenaf fiber loading and thymol concentration on the mechanical and thermal properties of PLA/kenaf/thymol composites, Industrial Crops and Products.Vol.61 (2014 ) 74–83.
[13] S. Shinoj, R. Visvanathan, S. Panigrahi, M. Kochubabu, Oil palm fiber (OPF) and its composites: a review, Industrial Crops and Products. Vol.33 (2011) 7–22.
[14] K.S. Sanjay, M. d. Abdul Sami, Sai Anoop, B.V. Gudipudi, S.V. Lahari and A.U. Syed, Advanced Composite Materials in Typical Aerospace Applications,Global Journals Inc (USA). Vol.14 ( 2014 ) 0975-5861.
[15] I.Y. Chang, J.K. Lees, Recent development in thermoplastic composites: a review of matrix systems and processing methods, J Thermoplast Compos. Vol.1 (3) (1988) 277-296.
[16] R.J. Lee, Compression strength of aligned carbon fiber-reinforced thermoplastic laminates Composites. Vol.18 (1) (1987) 35-39.
[17] B. Vieille, V.M. Casado, C. Bouvet, About the impact behavior of woven-ply carbon fiber-reinforced thermoplastic- and thermosetting-composites: a comparative study, Compos Struct. Vol.101 (2013) 9-21.
[18] W. Hufenbach, R. Böhm, M. Thieme, A. Winkler, E. Mäder, J. Rausch, Polypropylene/glass fiber 3D-textile reinforced composites for automotive applications, Mater Desig. Vol.32 (3) (2011) 1468-1476.
[19] N. Bernet, V. Michaud, P.E. Bourban, J. A.E. MånsonCommingled yarn composites for rapid processing of complex shapes, Compos Part A-Appl S. Vol.32 (11). (2001) 1613-1626.
[20] M.D. Wakeman, T.A. Cain, C.D. Rudd, R. Brooks, A.C. Long,Compression moulding of glass and polypropylene composites for optimised macro- and micro- mechanical properties-1 commingled glass and polypropylene, Compos Sci Technol. Vol.58 (12) (1998) 1879-1898.
[21] D. Trudel-Boucher, B. Fisa, J. Denault, P. Gagnon, Experimental investigation of stamp forming of unconsolidated commingled E-glass/polypropylene fabrics, Compos Sci Technol. Vol. 66 (2006) 555-570.
[22] S. Mazumdar, Composites manufacturing: materials, product and process engineering, CRC Press, Florida (2001).
[23] S. Ramakrishna, H. Hamada, Energy absorption characteristics of crash worthy structural composite materials, Key Engineering Materials. Vol.141–143 (1998) 585-620.
[24] T. Hou, G. Pearce, B. Prusty, D.Kelly , R. Thomson, Pressurised composite tubes as variable load energy absorbers, Composite structures.Vol.120 (2015) 346-357.
[25] C. Priem, R. Othman, P.D. Rozycki, Experimental investigation of the crash energy absorption of 2.5 D-braided thermoplastic composite tubes, Composite structures.Vol.116 (2014) 814-26.
[26] J.S.Kim, H. J. Yoon, K.B. Shin, A study on crashing behaviours of composite circular tubes with different reinforcing fibers, International Journal of Impact Engineering. Vol.38 (2011) 198-207.
[27] A. Othman, S. Abdullah, A. Ariffin, N. Mohamed, Investigating the quasi-static axial crashing behaviour of polymeric foam-filled composite pultrusion square tubes, Materials & Design. Vol.63( 2014) 446-59.
[28] Mohamed Alkateb, S.M. Sapuan, Z. Leman, M. R. Ishak, Mohammad Jawaid, Energy absorption capacities of kenaf fiber-reinforced epoxy composite elliptical cones with circumferential holes, Fibers and Polymers.Vol.18 (2017) 1187-1192.
[29] A. Elgalai, E. Mahdi, A. Hamouda, B.Sahari, Crashing response of composite corrugated tubes to quasi -static axial loading, Composite Structures. Vol.66 (2004) 66 -671.
[30] E. Mahdi, A. Hamouda, Energy absorption capability of composite hexagonal ring systems, Materials & Design. Vol.34 (2012) 201-10.
[31] E. Mahdi, A. Hamouda, B. Sahari,Y. Khalid, Experimental quasi-static axial crashing of cone–tube–cone composite system, Composites PartB: Engineering. Vol.34 (2003) 285 -302.
[32] M. Jawaid, H. A. Khalil, A .Hassan, R. Dungani, A. Hadiyane, Effect of jute fiber loading on tensile and dynamic mechanical properties of oil palm epoxy composites, CompositesPart B: Engineering.Vol.45 ( 2013 ) 619- 624.
[33] M.M. Davoodi, S.M. Sapuan, D. Ahmad, Aidy Ali, A. Khalina , Mehdi Jonoobi, Mechanical properties of hybrid kenaf/glass reinforced epoxy composite for passenger car bumper beam, Materials and Design. Vol.31 (2010) 4927-4932.
[34] Y. El-Shekeil, S. M. Sapuan, M. Algrafi, Effect of fiber loading on mechanical and morphological properties of cocoa pod husk fibers reinforced thermoplastic polyurethane composites, Materials & Design.Vol.64 (2014) 330-3.
[35] A.E. Ismail, M.F. Sahrom, Lateral crushing energy absorption of cylindricalkenaf fiber reinforced composites, International Journal of Applied Engineering Research. Vol.10(8) (2015) 19277-19288.
[36] R. Yahaya, S.M. Sapuan, Z. Leman, Selection of natural fiber for hybrid laminated composites vehicle spall liners using analytical hierarchy process (AHP), Appl. Mech. Mater. Vol.564 (2014) 400–405.
[37] S. Ataollahi, S. Taher, R.A. Eshkoor, A.K. Ariffin, C.H. Azhari, Energy absorption and failure response of silk/epoxy composite square tubes: experimental, Compos B: Eng.Vol.43 ( 2012) 42–548.
[38] R. Mahjoub, J. M. Yatim, A. R. Mohd Sam, M. Raftari, Characteristics of continuous unidirectional kenaf fiber reinforced epoxy composites Materials & Design. Vol.64 (2014) 640–649.
[39] M.F.M.Alkbir, S.M. Sapuan, A.A. Nuraini, M.R. Ishak, The Effect of Fiber Content on the Crashworthiness Parameters of Natural Kenaf Fiber-Reinforced Hexagonal Composite Tubes, Journal of Engineered Fibers and Fabric.Vol. 11 (2016) 75 –86
[40] R. Yahaya, S.M. Sapuan, M. Jawaid, Z. Leman, E.S. Zainudin, Mechanical performance of woven kenaf-Kevlar hybrid composites, Journal of Reinforced Plastics and Composites.Vol.33 (2014) 2242–2254.
[41] G. Savage, Development of penetration resistance in the survival cell of a Formula 1 racing car, Engineering Failure Analysis.Vol. 17 (2010) 116–127.
[42] J. Meredith, R. Ebsworth, S. R. Coles, B. M. Wood, K. Kirwan, Natural fiber composite energy absorption structures, Composites Science and Technology. Vol. 72 ( 2012 ) 211–217.
[43] P. Wambua, B. Vangrimde, S. Lomov, I. Verpoest, The response of natural fiber composites to ballistic impact by fragment simulating projectiles, Composite Structures. Vol. 77 (2007) 232–240.
[44] N. Uddin, E. d. Developments in Fiber-Reinforced Polymer (FRP) Composites for Civil Engineering, Elsevier, (2013).
[45] M. Alkateb, E. Mahdi, A. Hamouda and M. Hamdan, On the energy absorption capability of axially crashed composite elliptical cones, Composite structures. Vol. 66 (2004) 495-501.
[46] F.L. Matthews, R. D. Rawlins, Composite Materials, Engineering & Science, Chapman & Hall, London. (1994).
[47] D. A. Bahwgan, J. B. Lawrence, Analysis and performance of fiber composites, New York: John Wiley & Sons, Inc. (1990) 282-322.
[48] M.F.M Alkbir, S. M. Sapuan, A. A. Nuraini, M. R. Ishak, Effect of geometry on crashworthiness parameters of natural kenaf fiber reinforced composite hexagonal tube, Materials and Design. Vol.60 (2014) 85–93.
[49] R. A. Eshkoor, S. A. Oshkovr , A. B.Sulong, R. Zulkifli, A. K. Ariffin, C. H. Azhari, Comparative research on the crashworthiness characteristics of woven natural silk/epoxy composite tubes, Materials & Design.Vol.47 (2013) 248–257.
[50] S.A. Oshkovr, R. A. Eshko, S. T. Taher, A. K. Ariffina, C. H.Azhari, Crashworthiness characteristics investigation of silk/epoxy composite square tubes, Compos Struct.Vol.94 (2012) 2337–42.
[51] L.B. Yana, N. Chouw, K. Jayaraman, Effect of triggering and polyurethane foam-filler on axial crushing of natural flax/epoxy composite tubes, Mater Des. Vol. 56 (2014) 528–41.
[52] S. Ataollahi, S.T. Taher, R.A. Eshkoor, A.K. Ariffin, C.H. Azhari, Energy absorption and failure response of silk/epoxy composite square tubes: experimental, CompoB: Eng. Vol.43 (2012 ) 542–8.
[53] E.Mahdi, A.S.M. Hamouda, A.C. Sen, Quasi-static crushing behaviour of hybrid and non-hybrid natural fibre composite solid cones, Compos Struct. Vol.66 (2004) 647–63.
[54] L.B. Yana, N. Chou, K. Jayaraman, Effect of triggering and polyurethane foam-filler on axial crushing of natural flax/epoxy composite tubes, Mater Des. Vol. 56 (2014) 528–41.
[55] L.B.Yan, N. Chouw, Crashworthiness characteristics of flax fibre reinforced epoxy tubes for energy absorption application, Mater & Des. Vol.51 (2013) 629–64.
[56] J. Meredith, R. Ebsworth, S.R. Coles, B.M. Wood and K.Kirwan, Natural fibre composites energy absorption structures, Compos Sci Technol. Vol.72 (2012) 211–217.
[57] R.A. Eshkoor, S. Ude, A. Oshkovr, R. Sulong, R. Zulkifl, A. Ariffin, Failure mechanism of woven natural silk/epoxy rectangular composite tubes underaxial quasi -static crashing test using trigger mechanism, International Journal of Impact Engineering. Vol. (2014) 53 -61.
[58] H. Hamada, S. Ramakrishna, Energy Absorption Capabilities of Fiber Reinforced Thermoplastic Composite Materials, Proceedings of Japan-US VIIth Conference on Composite Materials. (1995) 609-616.
[59] A.E. Ismail, M.K. Awang, M.H. Sa’at, Tensile strength of natural fiber reinforced polyester composite, AIP Conf. Proc. Vol. 909 (2007) 174-179.
[60] A.E. Ismail, Energy Absorption Performances of Square Winding Kenaf Fiber Reinforced Composite Tubes, International Journal of Engineering and Technology. Vol.6 (2015) 0975-4024.
[61] S. Jeyanthi, J.J Rani, Improving mechanical properties by kenaf natural long fiber reinforced composite for automotiv e structures, India Journal of Applied Science and Engineering. Vol.15 (2012) 275-280.
[62] T.W. lau Saijod , M.R. said, mohd yuhazri Yaakob, On the effect of geometricl designs and failure modes in composite axial crushing: A literature review, Composite sturctures designs. Vol.94 (2012) 803-812.
[63] S. Ataollahi, S.T. Taher, R.A. Eshkoor, A.K. Ariffin and C.H. Azhari, Energy absorption and failure response of silk/epoxy composite square tubes: experimental, CompoB: Eng. Vol. 43(2) ( 2012 ) 542–8.
[64] RĤžiþka Milana, Kulíšek Viktora, Bogomolov Sergiia, ShánČl Víta, Development of composite energy absorber, Modelling of Mechanical and Mechatronic Systems. Vol. 96 (2014) 392 – 399.
[65] S.D. Salman, Z. Leman, M.T.H. Sultan, M. R. Ishak, F. Cardon, Influence of resin system on the energy absorption capability and morphological properties of plain woven kenaf composites, IOP Conference Series: Materials Science and Engineering. Vol. 100 (2015) 18–19.
[66] N.H. Bakar, K.M. Hyie, A.F. Mohamed, Z. Salleh, A. Kalam, Kenaf fiber composites using thermoset epoxy and polyester polymer resins: energy absorbed versus tensile properties, Materials Research Innovations. Vol. 18 (2014) 505-50.
[67] M. Tehrani Dehkordi, H. Nosraty , M.M. Shokrieh, G. Minak, D. Ghelli, The influence of hybridization on impact damage behavior and residual compression strength of intraply basalt/nylon hybrid composites, Materials & Design. Vol..43(0) (2013) 283-290.
[68] M. Aktaş, C. Atas, B.M. İçten, R. Karakuzu, An experimental investigation of the impact response of composite laminates, Composite Structures. Vol.87 (2009) 307-13.
[69] S.M. Sapuan, N. Harun , K. Abbas, Design and fabrication of a multipurpose table using a composite of epoxy and banana pseudostem fibres, Journal of Tropical Agriculture, Vol.45 (2007) 66-8.
[70] M.F. Omar, H.M.d. Akil, Z.A. Ahmad, A.A.M. Mazuki Yokoyama T, Dynamic properties of pultruded natural fibre reinforced composites using Split Hopkinson Pressure Bar technique Materials & Design.Vol.31 (2010) 4209- 18.
[71] M. Ramakrishna, V. kumar, N. Yuvrajsingh, Novel treated Pine Needle fiber reinforced polypropylene composites and their characterizatio,J. Reinf. Plast. Comp. Vol.29 (2010) 2343-2355.
[72] J. Chu , J. Sullivan . Recyclability of a fiber reinforced cyclic polycarbonat composite, Polym. Comp. Vol.17(4) (1996) 556-567.
[73] M.M. Davoodi, S.M. Sapuan, R Yunus, Conceptual design of a polymer Composite automotive bumper energy absorber, Mater. Des. Vol.29 (2008) 1447-1452.
[74] T.A. Warrior, E.Turner and M. Ribeaux Cooper, Effects of boundary conditions on the energy absorption of thin-walled polymer composite tubes under axial crushing, Thin-Walled Structures.Vol.46 (2008) 905–918.
[75] A. Ticoalu, T. Aravinthan, and F. Cardona, A review of current development in natural fiber composites for structural and infrastructure applications, (Toowoomba, Australia, in Proceedings of the Southern Region Engineering Conference. (SREC)-F1-5 ( 2010) 113–11.
[76] T. Sen, H.N. Reddy, Various industrial applications of hemp, kinaf, flax and ramie natural fibers, International Journal of Innovation, Management and Technology. Vol.2 (2011) 192–198.
[77] U.S. Bongarde, V.D. Shinde, Review on natural fiber reinforcement polymer composite, International Journal of Engineering Science and Innovative Technology. Vol.3 (2014) 431–436.
[78] L. Mwaikambo, Review of the history, properties and application of plant fibers, African Journal of Science and Technology.Vol.7 (2006) 120-133.