Status and Prospects of SiC Power Devices

$40.00

Chapter 4 (digital PDF) of the book on Advancing Silicon Carbide Electronics Technology I.

Status and Prospects of SiC Power Devices

M. Bakowski

SiC power devices offer significant benefits of improved efficiency, dynamic performance and reliability in energy conversion systems. The challenges and prospects of different types of SiC devices including material and technology constraints on the device performance are reviewed. The on-state voltage and on-resistance of SiC unipolar and bipolar devices in the voltage range up to 30 kV has been determined by device simulations. System benefits and remaining challenges of SiC power electronics are summarized. Major reliability challenges of SiC power devices are reviewed and exemplified.

Keywords
Silicon Carbide, Power Devices, Unipolar, Bipolar, System Benefits, Status, Trends, Reliability

Published online 9/1/2018, 46 pages

DOI: http://dx.doi.org/10.21741/9781945291852-4

Citation: M. Bakowski, Status and Prospects of SiC Power Devices, in: Advancing Silicon Carbide Electronics Technology I, K. Zekentes, K. Vasilevskiy (Eds.), Materials Research Forum LLC, Millersville, 2018, pp 191-236

Part of the book on Advancing Silicon Carbide Electronics Technology I

References
[1] Yole, Power SiC 2016 Materials Devices Modules Applications, June 2016 Report.
[2] M. Bakowski, “Status and prospects of SiC power devices”, IEEJ Transactions on Industry Applications, 126-D, (2006), no. 4, pp 391-399
[3] A. Galeckas, Royal Institute of Technology, KTH, private communication (2000)
[4] R. Stahlbush, N.A. Mahadik, Unexpected Sources of Basal Plane Dislocations in 4H-SiC, ECS Transactions 58 (4), 9 (2013). https://doi.org/10.1149/05804.0009ecst
[5] N.A. Mahadik et al., Basal Plane Dislocation Mitigation Using High Temperature Annealing in 4H-SiC Epitaxy, ECS Transactions 58 (4), 325 (2013). https://doi.org/10.1149/05804.0325ecst
[6] H. Wang et al., Studies of relaxation processes and basal plane dislocations in CVD grown homoepitaxial layers of 4H-SiC, ECS Transactions 64 (7), 213, (2014). https://doi.org/10.1149/06407.0213ecst
[7] T. Kimoto, Material science and device physics in SiC technology for high-voltage power devices, Jpn. J. of Appl. Phys. 54 (2015) 040103. https://doi.org/10.7567/JJAP.54.040103
[8] D. Tournier, P. Godignon, J. Montserrat, D. Planson, C. Raynaud, J. P Chante, J.-F. De Palma, F. Sarrus, A 4H-SiC high-power-density VJFET as controlled current limiter, IEEE Transactions on Industry Applications, 39(5):1508–1513, 2003. https://doi.org/10.1109/TIA.2003.816465
[9] W. Konrad, K. Leong, K. Krischan, A. Muetze, A simple SiC JFET based AC variable current limiter, 16th European Conference on Power Electronics and Applications (EPE’14-ECCE Europe), 2014
[10] D. Tournier, P. Godignon, S. Q. Niu, J. F. de Palma, SiC Current Limiting FETs (CLFs) for DC Applications, Materials Science Forum, Vols. 778-780, pp. 895-898, 2014. https://doi.org/10.4028/www.scientific.net/MSF.778-780.895
[11] P. Friedrichs, Recent additions to Infineon’s SiC portfolio, International SiC Power Electronics Applications Workshop ISICPEAW 2014, May 25-27, Stockholm
[12] R.K. Malhan, M. Bakowski, Y. Takeuchi, N. Sugiyama, A. Schöner, Design, process, and performance of all-epitaxial normally-off SiC JFETs, Phys. Status Solidi A, 206, pp. 2308-2328, (2009). https://doi.org/10.1002/pssa.200925254
[13] Streamlining Your Power Design With SiC Cascodes, APEC 2017 Seminar Sponsored by USCi, Tampa, March 26-30, 2017
[14] C. Rockneanu, SiC Cascodes and its advantages in power electronic applications, International Wide Bandgap Power Electronics Applications Workshop, IWBGPEAW 2017, May 22-23, Stockholm
[15] D. Sheridan, Silicon Carbide Device Update, High Megawatt Power Cond. Workshop, NIST (2012)
[16] J.-K. Lim, D. Peftitsis, J. Rabkowski, M. Bakowski, H.-P. Nee, Analysis and experimental verification of the influence of fabrication process tolerances and circuit parasitics on transient current sharing of parallel-connected SiC JFETs, IEEE Transactions on Power Electronics, vol. 29, no. 5, pp. 2180-2191, May 2014. https://doi.org/10.1109/TPEL.2013.2281084
[17] D-P. Sadik, J-K. Lim, J. Colmenares, M. Bakowski, H-P Nee, Comparison of Thermal Stress during Short-Circuit in Different Types of 1.2 kV SiC Transistors Based on Experiments and Simulations, Materials Science Forum, vol. 897, pp. 595-598, 2017. https://doi.org/10.4028/www.scientific.net/MSF.897.595
[18] P. Ranstad, F. Giezendanner, M. Bakowski, J-K. Lim, G. Tolstoy, A. Ranstad, SiC Power Devices in a Soft Switching Converter including Aspects on Packaging, ECS Trans., 64 (7), p. 51 (2014). https://doi.org/10.1149/06407.0051ecst
[19] P. Hazdra, S. Popelka, A. Schoner, Local Lifetime Control in 4H-SiC by Proton Irradiation, ICSCRM 2017, ID: 2759317
[20] N. Thierry-Jebali, Reverse recovery control in silicon carbide high-voltage PiN diodes, International Wide BandGap Power Electronics Applications Workshop, SCAPE 2018, June 10-12, Stockholm
[21] A. Hallén, M. Bakowski, Combined Proton and Electron Irradiation for Improved GTO Thyristors, Solid-State Electronics, Vol. 32, pp. 1033-1037, (1989). https://doi.org/10.1016/0038-1101(89)90167-6
[22] A. Hallén, M. Bakowski, M. Lundqvist, Multiple Proton energy irradiation for improved GTO thyristors, Solid-State Electronics Vol. 36, No. 2, pp. 133-141, 1993. https://doi.org/10.1016/0038-1101(93)90131-9
[23] M. Bakowski, N. Galster, A. Hallén, A. Weber, Proton Irradiation for Improved GTO Thyristors, Proc. 9th Symp. Power Semicond. Devices and ICs, Weimar (Germany), May 26-29, 1997, pp. 77-80, (1997). https://doi.org/10.1109/ISPSD.1997.601436
[24] S. K. Ghandhi, The transistor, chapter 4.3.2, in Semoconductor Power Devices, physics of operation and fabrication technology, A Wiley-Interscience Publication, John Wiley & Sons, Inc., 1977, pp.157-162.
[25] M. Domeij, A. Konstantinov, A. Lindgren, C. Zaring, K. Gumaelius, M. Reimark, Large area 1200 V SiC BJTs with β>100 and ρON <3 mΩcm, Mat. Sci. Forum, vol. 717-720, pp. 1123-1126, (2012). https://doi.org/10.4028/www.scientific.net/MSF.717-720.1123
[26] S. Sundaresan, B. Grummel, B. Hamilton, D. Singh, Improvement of the Current Gain Stability of SiC Junction Transistors, Mater. Sci. Forum, vol. 821-823, pp.822-825 (2015). https://doi.org/10.4028/www.scientific.net/MSF.821-823.822
[27] S. Sundaresan, B. Grummel, D. Singh, Current Gain Stability of SiC Junction Transistors subjected to long-duration DC and Pulsed Current Stress, Mater. Sci. Forum, vol. 858, pp.929-932 (2016). https://doi.org/10.4028/www.scientific.net/MSF.858.929
[28] R. Schorner, P. Friedrichs, D. Peters, D. Stephani, Significantly Improved Performance of MOSFET’s on Silicon Carbide Using the 15R-SiC Polytype, IEEE Electron Dev. Letters, vol. 20, no. 5, pp. 241- 244 (1999). https://doi.org/10.1109/55.761027
[29] H. Matsunami, T. Kimoto, Step-controlled epitaxial growth of SiC, Mater. Aci. Eng. R., Reports 20, pp. 125-166 (1997)
[30] J. Palmour, The era of the 2nd generation SiC MOSFET at Cree, International SiC Power Electronics Applications Workshop ISICPEAW 2013, Stockholm, June 10-11, 2013
[31] N. Hase, ROHM’s SiC Power Device Update, Brief Introduction to MOSFET-Only SiC Power Module and Reliability Test Results of SiC MOSFET International SiC Power Electronics Applications Workshop ISICPEAW 2013, Stockholm, June 10-11, 2013
[32] P. Sandvik, Progress in development and reliability of 1.2kV [& higher SiC] devices at GE, International SiC Power Electronics Applications Workshop ISICPEAW 2014, Stockholm, May 26-27, 2014
[33] M. Imaizumi, N. Miura, Characteristics of 600, 1200, and 3300 V Planar SiC-MOSFETs for Energy Conversion Applications, IEEE Trans. Electron Dev., vol. 62, pp 390-395, (2015). https://doi.org/10.1109/TED.2014.2358581
[34] J. B. Casady, SiC MOSFET Commercial and Development Reliability Summary in 2015, International SiC Power Electronics Applications Workshop ISICPEAW 2015, Stockholm, May 27-28, 2015
[35] M. Saggio, Silicon Carbide MOSFEts and Diodes for High Volume Market: Needs, Opportunities and Perspective, International Wide BandGap Power Electronics Applications Workshop, IWBGPEAW 2017, Stockholm, May 22-23, 2017
[36] A.K. Agarwal, R.R. Siergiej, S. Seshadri, M.H. White, P.G. McMullin, A.A. Burk, L.B. Rowland, C.D. Brandt, R.H. Hopkins, A Critical Look at the Performance Advantages and Limitations of 4H-SiC Power UMOSFET Structures, Proc. 8th Int. Symp. Power Semicond. Devices and ICs, Maui (Hawaii) May 1996, pp. 119-122.
[37] S. Onda, R. Kunmar, K. Hara, SiC Integrated MOSFETs, Physica Status Solidi (a), No. 1, pp. 369-388 (1997). https://doi.org/10.1002/1521-396X(199707)162:1<369::AID-PSSA369>3.0.CO;2-4
[38] H. Yano, H. Nakao,T. Hatayama,Y. Uraoka, T. Fuyuki, Increased Channel Mobility in 4H-SiC UMOSFETs Using On-axis Substrates, Mat Sci. Forum, Vols. 556-557, pp 807-810, (2007). https://doi.org/10.4028/www.scientific.net/MSF.556-557.807
[39] Y. Nakano, T. Mukai, R. Nakamura, T. Nakamura, A. Kamisawa, 4H-SiC Trench Metal Oxide Semiconductor Field Effect Transistors with Low On-Resistance, Japanese Journal of Applied Physics vol. 48, 04C100 (2009)
[40] Y. Nakano, R. Nakamura, H. Sakairi, S. Mitani, T. Nakamura, 690V, 1.00 mΩcm2 4H-SiC Double-Trench MOSFETs, Mat Sci. Forum, vol. 717-720, pp. 1069-1072 (2012). https://doi.org/10.4028/www.scientific.net/MSF.717-720.1069
[41] R. Nakamura, Y. Nakano, M. Aketa, N. Kawamoto, K. Ino, 1200V SiC Trench MOSFETs, International SiC Power Electronics Applications Workshop, ISICPEAW 2014, Stockholm, May 26-27, 2014
[42] D. Peters, R. Siemieniec, T. Aichinger, T. Basler, R. Esteve, W. Bergner, D. Kueck, Performance and Ruggedness of 1200V SiC-Trench-MOSFET, Proceedings of the 29th Int. Symposium on Power Semiconductor Devices and ICs, Sapporo, (2017). https://doi.org/10.23919/ISPSD.2017.7988904
[43] V. V. Afanasev, M. Bassler, G. Pensl, M. Schulz, Intrinsic SiC/SiO2 Interface States, phys. stat. sol. (a) 162, 321-337 (1997)
[44] H. Nagasawa, M. Abe, K. Yagi, T. Kawahara, N. Hatta, Fabrication of high performance 3C-SiC vertical MOSFETs by reducing planar defects, Physica Status Solidi (B) Basic Research, July 2008, 245(7), pp. 1272-1280, 2008.
[45] M. Bakowski, A. Schöner, P. Ericsson, H. Strömberg, H. Nagasawa, M. Abe, “Development of 3C-SiC MOSFETs”, Journal of telecommunications and information technology, no. 2, pp. 49-56, (2007).
[46] S-H. Ryu et al., 950V, 8 mΩ-cm2 High Speed 4H-SiC Power DMOSFETs, MRS 2006 Spring Meet. in San Francisco (values extracted from the presented data)
[47] Schöner, A.; Krieger, M.; Pensl, G.; Abe, M.; Nagasawa, H. Fabrication and Characterization of 3C‐SiC‐Based MOSFETs, Chemical Vapor Deposition , September 2006, Vol. 12, Issue: 9, pp. 523-530, 2006.
[48] H. Takaya, J. Morimoto, K. Hamada, T. Yamamoto, J. Sakakibara, Y. Watanabe, N. Soejima, A 4H-SiC Trench MOSFET with Thick Bottom Oxide for Improving Characteristics, Proceedings of the 25th International Symposium on Power Semiconductor Devices & ICs, Kanazawa 2013, pp. 43-46
[49] M. Bakowski, U. Gustafsson and U. Lindefelt, Simulation of SiC High Power Devices, Phys. Stat. Sol. (a), Vol. 162, pp. 421-440, 1997. https://doi.org/10.1002/1521-396X(199707)162:1<421::AID-PSSA421>3.0.CO;2-B
[50] M. Bakowski, HTIPM project overview, International SiC Power Electronics Applications Workshop, ISICPEAW 2007, Stockholm, March 31, 2009
[51] M. Bakowski, J-K. Lim, W. Kaplan, A. Schöner, Merits of buried grid technology for advanced SiC device concepts, ECS Trans., 41 (8) p. 155 (2011). https://doi.org/10.1149/1.3631493
[52] M. Bakowski, J-K. Lim, W. Kaplan, Merits of buried grid technology for SiC JBS Diodes, ECS Trans., 50 (3) p. 415 (2012). https://doi.org/10.1149/05003.0415ecst
[53] F. Udrea, G. Deboy, T. Fujihira, Superjunction Power Devices, History, Development, and Future Prospects, IEEE Trans. on Electron Dev., vol. 64, no. 3, pp. 713-727, (2017). https://doi.org/10.1109/TED.2017.2658344
[54] B. J. Baliga, Edge Termination, in: Power Semiconductor Devices, PWS Publishing Company, 1996, pp. 81-122.
[55] T. Drabe, R. Sittig, Theoretical investigation of planar junction termination, Solid-State Elec., vol. 39, no. 3, pp. 323-328, Mar. 1996. https://doi.org/10.1016/0038-1101(95)00195-6
[56] SiC semiconductor device comprising a pn junction, Mietek Bakowski, Ulf Gustafsson, Christopher I. Harris. (1999, August 3). Patent US 5,932,894 [Online]. Available: https://patentimages.storage.googleapis.com/pdfs/US5932894.pdf
[57] Fabrication of a SiC semiconductor device comprising a pn junction with a voltage absorbing edge, Mietek Bakowski, Ulf Gustafsson, Kurt Rottner, Susan Savage. (2000, March 21). Patent US 6,040,237 [Online]. Available: https://patentimages.storage.googleapis.com/pdfs/US6040237.pdf
[58] M. Bakowski, J-K. Lim, W. Kaplan, A. Schöner,Merits of buried grid technology for advanced SiC device concepts, ECS Trans., vol. 41 (8) pp. 155-158, 2011. https://doi.org/10.1149/1.3631493
[59] M. Bakowski, P. Ranstad, J-K. Lim, W. Kaplan, S. A. Reshanov, A. Schöner, F. Giezendanner, A. Ranstad, Design and Characterization of Newly Developed 10 kV 2 A SiC p-i-n Diode for Soft-Switching Industrial Power Supply, IEEE Trans on Electron Devices, Vol. 62, No. 2, p. 366, (2015). https://doi.org/10.1109/TED.2014.2361165
[60] JEDEC publication JEP122E, Failure mechanisms and models for semiconductor devices, March 2009
[61] J. Palmour, Cree – Power products reliability data and pricing forecasts for power module, power MOSFET and power diode products from 650V to 15kV, Workshop on High-Megawatt Direct-Drive Motors and Front-End Power Electronics, NIST, 2014
[62] B. Hull, D. Lichtenwalner, S-H. Ryu, E. van Brunt, J. Zhang, S. Allen, D. Grider, J. Casady, A. Burk, M. O’Loughlin, J. Palmour, Next Generation SiC MOSFETs Performance and Reliability, ARL MOS Workshop, August 18, 2016
[63] L. Stevanovic, P. Losee, S. Kennerly, A. Bolotnikov, B. Rowden, J. Smolenski, M. Harfman-Todorovic, R. Datta, S. Arthur, D. Lilienfeld, T. Schuetz, F. Carastro, F. Tao, D. Esler, R. Raju, G. Dunne, P. Cioffi, L. Yu, Readiness of SiC MOSFETs for Aerospace and Industrial Applications, Materials Science Forum, Vol. 858, pp 894-899, (2016). https://doi.org/10.4028/www.scientific.net/MSF.858.894
[64] A. J. Lelis, R. Green, D. B. Habersat and M. El, Basic Mechanisms of Threshold-Voltage Instability and Implications for Reliability Testing of SiC MOSFETs, IEEE Trans. on Electron Devices, vol. 62, no. 2, pp. 315-323, 2015. https://doi.org/10.1109/TED.2014.2356172
[65] D. P. Sadik, J-K. Lim, J. Colmenares, M. Bakowski, H-P. Nee, Comparison of Thermal Stress during Short-Circuit in Different Types of 1.2 kV SiC Transistors Based on Experiments and Simulations, Materials Science Forum, Vol. 897, pp. 897-598, 2017. https://doi.org/10.4028/www.scientific.net/MSF.897.595
[66] D-P. Sadik, J. Colmenares, M. Bakowski, H-P. Nee, J-K Lim, Comparison of Thermal Stress during Short-Circuit in Different Types of 1.2 kV SiC Transistors Based on Experiments and Simulations, submitted to IEEE Trans on Electron Devices 2018.
[67] Information on http://www.ioffe.ru/SVA/NSM/Semicond/SiC/bandstr.html
[68] D. Silber and M. J. Robertson, Solid-State Electronics, Thermal effects on the forward characteristics of silicon p-i-n diodes at high pulse currents, Vol. 16, pp. 1337-1346 (1973)
[69] M. Syväjärvi, R. Yakimova, M. Tuominen, A. Kakanakova-Georgieva, M. F. MacMillan, A. Henry, Q. Wahab, E. Janzén, Growth of 6H and 4H-SiC by sublimation epitaxy, Journal of Crystal Growth, vol. 197, pp. 155-162, (1999). https://doi.org/10.1016/S0022-0248(98)00890-2
[70] J. Lutz, R. Baburske, Some aspects on ruggedness of SiC power devices, Microelectronics Reliability, vol. 54, pp. 49–56, (2014). https://doi.org/10.1016/j.microrel.2013.09.022
[71] J. Lutz et al., Models for lifetime Prediction, in: Semiconductor power Devices; Physics, Characteristics, Reliability, Springer-Verlag Berlin Heidelberg, 2011, pp. 394-400. https://doi.org/10.1007/978-3-642-11125-9
[72] M. Held et al., Fast Power Cycling for IGBT Modules in Traction Applications, Int. Conf. on Power Electronics and Drive Systems, Singapore, May 1997. https://doi.org/10.1109/PEDS.1997.618742
[73] J. Lutz et al., Overvoltage – Voltage Above Blocking capability, in: Semiconductor power Devices; Physics, Characteristics, Reliability, Springer-Verlag Berlin Heidelberg, 2011, p. 431. https://doi.org/10.1007/978-3-642-11125-9
[74] U. Zimmermann, A. Hallen, A. O. Konstantinov, B. Breitholtz, Investigation of Microplasma Breakdown in 4H Silicon Carbide, Materials Res. Society Symposium Proceedings. Vol. 512, pp. 151-156, 1998. https://doi.org/10.1557/PROC-512-151