Effect of Alkaline Hornification in Sisal Fibers on the Mechanical Behaviour


Effect of Alkaline Hornification in Sisal Fibers on the Mechanical Behaviour

R.D. Santos, S.R. Ferreira, E.R.F. Santos, G.E. Oliveira, F.A. Silva, F.G. Souza, R.D. Toledo Filho

Abstract. Aiming at a reduction in the water absorption capacity of lignocellulosic fibers, wetting and drying cycles are usually used in the paper and cellulose industry. This procedure stiffens the polymeric structure of the fiber-cells (process known as hornification) resulting in a higher dimensional stability. Several authors have proposed treatments in natural fibers, including hornification, that modifies the surface of the fibers and increase the mechanical behavior. The present study presents a comprehensive analysis of the influence of alkaline hornification with calcium hydroxide 0.7% (1 cycle) on the structure modification, mechanical response, durability performance and bond behavior of sisal fibers. The intrinsic changes on the fiber structure as well as their physical and chemical characteristics were evaluated through analytical techniques such as X-ray diffraction, Thermogravimetry, FTIR and Scanning Electronic Microscope, while their mechanical response was evaluated with direct tensile tests. The obtained results indicate that the hornification process changes the fiber properties, mainly morphological, physical and chemical properties, which improves their mechanical properties.

Natural Fibers, Chemical Treatment, Alkaline Hornification

Published online , 8 pages
Copyright © 2018 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA

Citation: R.D. Santos, S.R. Ferreira, E.R.F. Santos, G.E. Oliveira, F.A. Silva, F.G. Souza, R.D. Toledo Filho, ‘Effect of Alkaline Hornification in Sisal Fibers on the Mechanical Behaviour’, Materials Research Proceedings, Vol. 7, pp 449-456, 2018

DOI: http://dx.doi.org/10.21741/9781945291838-42

The article was published as article 42 of the book Non-Conventional Materials and Technologies

[1] Onuaguluchi, O.; Banthia, N. Plant-based natural fibre reinforced cement composites: A review, Cem. Conc. Comp. 2016¸ 68, 96-108.
[2] Ferreira, S. R.; Lima, P. R. L.; Silva, F. A.; Toledo Filho, R. D. Effect of Sisal Fiber Hornification on the Fiber-Matrix Bonding Characteristics and Bending Behavior of Cement Based Composites, Key Eng. Mat. 2014, 600, 421-432. https://doi.org/10.4028/www.scientific.net/KEM.600.421
[3] Barra, B.; Paulo, B.; Alves Junior, C.; Savastano Junior, H.; Ghavami, K. Effects of Methane Cold Plasma in Sisal Fibers, Key Eng. Mat. 2012, 517, 458-468. https://doi.org/10.4028/www.scientific.net/KEM.517.458
[4] Beraldo, A. L.; Payá, J.; Monzó, J.M. Evaluation of Compatibility between Sugarcane Straw Particles and Portland Cement, Key Eng. Mat. 2014, 600, 250-255. https://doi.org/10.4028/www.scientific.net/KEM.600.250
[5] Hospodarova, V.; Singovszka, E.; Števulová, N. Characterization of Cellulosic Fibres Properties for their Using in Composites, Sol. Sta. Phen. 2016, 244, 146-152. https://doi.org/10.4028/www.scientific.net/SSP.244.146
[6] Arsène, M. A.; Bilba, K.; Savastano Jr, H.; Ghavami, K. Treatments of non-wood plant fibres used as reinforcement in composite materials, 2013. Mat. Res. 16(4): 903-923. https://doi.org/10.1590/S1516-14392013005000084
[7] Kabir, M. M.; Wang, H.; Lau, K. T.; Cardona, F. Chemical treatments on plant-based natural fibre reinforced polymer composites: An overview. Comp. Part B: Eng. 2012, 43 (7) 2883-2892. https://doi.org/10.1016/j.compositesb.2012.04.053
[8] Sasha P., Manna S, Chowdhury S. R., Sen R., Roy D., Adhikari B. Enhancement of tensile strength of lignocellulosic jute fibres by alkali-steam treatment. Bioresources Technology 2010;101:3182–3187. https://doi.org/10.1016/j.biortech.2009.12.010
[9] W. Ruland. X-ray Determination of Crystallinity and Diffuse Disorder Scattering, Acta Crystallogr. 1961, 14, 1180-1185. https://doi.org/10.1107/S0365110X61003429
[10] Toledo Filho, R. D.; England, G.L; Ghavami, K Comportamento em Compressão de Argamassas Reforçadas com Fibras Naturais – Parte A: Relação Tensão-Deformação Experimental e Processo de Fratura. Rev. Bras. Eng. Agric. Amb. 1997 01 (01), 79-88.
[11] ASTM C1557-14 Standard test method for tensile strength and Young’s modulus of fibers ASTM International, West Conshohocken, PA 2014.
[12] Ahujaa, D.; Kaushika, A.; Chauhanb, G. S. Fractionation and physicochemical characterization of lignin from waste jute bags: Effect of process parameters on yield and thermal degradation. Int. Jour. Biol. Macrom. 2017, 139, 551-561. https://doi.org/10.1016/j.ijbiomac.2017.01.057
[13] Elias, E.; Costa, R.; Marques, F.; Oliveira, G.; Guo, Q.; Thomas, S.; Souza Jr, F. G. Oil-spill cleanup: The influence of acetylated curaua fibers on the oil-removal capability of magnetic composites. Jour. Ap. Pol. Sci. 2015, 132 (13), 41732.
[14] Silvertein, R. M.; Webster, F. X.; Indentificação Espectrometric de Compostos Orgânicos, 6ª ed., LTC, Rio de Janeiro 2000.
[15] Mazlita Y., H.V. Lee; S.B.A. Hamid Preparation of Cellulose Nanocrystals Bio-Polymer From AgroIndustrial Wastes: Separation and Characterization. Polym. and Polym. Comp. 2016, 24 (9) 719-728. https://doi.org/10.1177/096739111602400907
[16] Wei, J.; Meyer, C. Utilization of rice husk ash in green natural fiber-reinforced cement composites: Mitigating degradation of sisal fiber Cem. Conc. Res. 2016, 81, 84-111.