Utilization of Chitosan and its Nanocomposites as Adsorbents for Efficient Removal of Dyes

$20.00

Utilization of Chitosan and its Nanocomposites as Adsorbents for Efficient Removal of Dyes

Ufana Riaz, Jyoti Kashyap

Chitosan polymer nanocomposites have gained attention as effective adsorbent due to low cost and bioavailability. Many chitosan nanocomposites are obtained through chemical and physical modifications of raw chitosan that include cross-linking, grafting and impregnation of the chitosan backbone. Modification of chitosan backbone enhances the adsorption capability of the nanocomposite for adsorption of different types of dyes. This chapter discusses the different types of chitosan polymer nanocomposites that have been utilized for the removal of various organic dyes. The effects of various parameters like adsorbent dosage, dye concentration, pH, temperature, and adsorption mechanisms have also been highlighted which can help researchers to analyze and identify the future research work in this area.

Keywords
Chitosan, Adsorbent, Nanocomposites, Dye Removal, Kinetics

Published online 7/1/2018, 28 pages

DOI: http://dx.doi.org/10.21741/9781945291753-10

Part of the book on Chitosan-Based Adsorbents for Wastewater Treatment

References
[1] H.H.G. Savenije, Why water is not an ordinary economic good, or why the girl is special. Phys Chem Earth. Phys Chem Earth 27 (2002) 741–4. https://doi.org/10.1016/S1474-7065(02)00060-8
[2] F. A. Klink, E. P. Moriana, J. S. Garcı́a. The social construction of scarcity. The case of water in Tenerife (Canary Islands). Ecological Economics. Ecol. Econ. 34 (2000) 233–45. https://doi.org/10.1016/S0921-8009(00)00160-9
[3] A. Bhatnagar, M. Sillanpää. Utilization of agro-industrial and municipal waste materials as potential adsorbents for water treatment—A review, Chem. Eng. J. 157 (2010) 277–96. https://doi.org/10.1016/j.cej.2010.01.007
[4] L. Hu, Z. Yang, L. Cui, Y. Li, Y. H. H. Ngo, Q. Wang, H. Wei, L. Ma, B. Yan. Fabrication of hyperbranched polyamine functionalized graphene for high-efficiency removal of Pb(II) and methylene blue. Chem. Eng. J. 287 (2016) 545–556. https://doi.org/10.1016/j.cej.2015.11.059
[5] M. Toor, B. Jin, S. Dai, V. Vimonses. Activating natural bentonite as a cost-effective adsorbent for removal of Congo-red in wastewater, J. Ind. Eng. Chem. 21 (2015) 653–661. https://doi.org/10.1016/j.jiec.2014.03.033
[6] S. Hashemian, A. Foroghimoqhadam. Effect of copper doping on CoTiO3 ilmenite type nanoparticles for removal of congo red from aqueous solution. Chem. Eng. J. 235 (2014) 299–306. https://doi.org/10.1016/j.cej.2013.08.089
[7] M. Vakili, M. Rafatullah, B. Salamatinia, A.Z. Abdullah, M.H. Ibrahim, K.B. Tan, Z. Gholami, P. Amouzgar. Application of chitosan and its derivatives as adsorbents for dye removal from water and wastewater: A review. Carbohydr. Polym. 113 (2014) 115–130. https://doi.org/10.1016/j.carbpol.2014.07.007
[8] T. R. Kant. Textile dyeing industry an environmental hazard. Natural Science 4 (2012) 22-26. https://doi.org/10.4236/ns.2012.41004
[9] C. Zubieta, M.B. Sierra, M.A. Morini, P.C. Schulz, L. Albertengo. The adsorption of dyes used in the textile industry on mesoporous materials. Colloid Poly. Sci. 286 (2008) 377–384. https://doi.org/10.1007/s00396-007-1777-7
[10] H. Yan, H. Li, H. Yang, A. Li, R. Cheng. Removal of various cationic dyes from aqueous solutions using a kind of fully biodegradable magnetic composite microsphere. Chem. Eng. J. 223 (2013) 402–411. https://doi.org/10.1016/j.cej.2013.02.113
[11] I. Savin, R. butnaru, wastewater characteristics in textile finishing mills. Environ. Eng. Manag. J. 7 (2008) 859-864.
[12] S. Ghorai, A.K. Sarkar, A.B. Panda, S. Pal. Effective removal of Congo red dye from aqueous solution using modified xanthan gum/silica hybrid nanocomposite as adsorbent. Biores. Technol. 144 (2013) 485–491. https://doi.org/10.1016/j.biortech.2013.06.108
[13] A.U. Metin, H. Çiftçi, E. Alver. Efficient Removal of Acidic Dye Using Low-Cost Biocomposite Beads. Ind. Eng. Chem. Res. 52 (2013) 10569–10581. https://doi.org/10.1021/ie400480s
[14] E. Forgacs, T. Cserháti, G. Oros. Removal of synthetic dyes from wastewaters: a review,Environ. Int. 30 (2004) 953−971. https://doi.org/10.1016/j.envint.2004.02.001
[15] G. Mezohegyi, F. P. van der Zee, J. Font, A. Fortuny, A. Fabregat, Towards advanced aqueous dye removal processes: A short review on the versatile role of activated carbon. J. Environ. Manage. 102 (2012) 148−164. https://doi.org/10.1016/j.jenvman.2012.02.021
[16] Z. Jia, Z. Li, T. Ni, S. Li. Adsorption of low-cost absorption materials based on biomass (Cortaderia selloana flower spikes) for dye removal: Kinetics, isotherms and thermodynamic studies. J. Mol. Liq. 229 (2017) 285–292. https://doi.org/10.1016/j.molliq.2016.12.059
[17] R.A.A. Muzzarelli, Potential of chitin/chitosan-bearing materials for uranium recovery: An interdisciplinary review. Carbohydr Polym 84 (2011)54–63. https://doi.org/10.1016/j.carbpol.2010.12.025
[18] A. Bhatnagar, M. Sillanpää, Applications of chitin- and chitosan-derivatives for the detoxification of water and wastewater–a short review. Adv. Colloid. Interface. 159 (2009) 26–38.
[19] G. Crini G, P-M Badot. Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: A review of recent literature. Prog. Polym. Sci. 33(2008) 399–447. https://doi.org/10.1016/j.progpolymsci.2007.11.001
[20] L. Pontoni, M. Fabbricino. Use of chitosan and chitosan-derivatives to remove arsenic from aqueous solutions—a mini review. Carbohydr. Res.356 ( 2012) 86–92. https://doi.org/10.1016/j.carres.2012.03.042
[21] K. Shen, M.A. Gondal. Removal of hazardous Rhodamine dye from water by adsorption onto exhausted coffee ground. J. Saudi Chem. Soc. 21 (2017) S120–S127. https://doi.org/10.1016/j.jscs.2013.11.005
[22] M.N.R. Kumar. A review of chitin and chitosan applications. React. Funct. Poly. 46 (2000) 1–27. https://doi.org/10.1016/S1381-5148(00)00038-9
[23] R. Riva, H. Ragelle, A. Rieux, N. Duhem, C. Jerome, V. Preat, V. Adv. Chitosan and Chitosan Derivatives in Drug Delivery and Tissue Engineering. Polym. Sci. 244 (2011) 244, 19–44.
[24] L. Zhou, J. Jin, Z. Liu, X. Liang, C. Shang Adsorption of acid dyes from aqueous solutions by the ethylenediamine-modified magnetic chitosan nanoparticles.185 (2011) 1045-1052.
[25] M.-Y. Chang, R.-S. Juang, Adsorption of tannic acid, humic acid, and dyes from water using the composite of chitosan and activated clay. J. Colloid Interface Sci. 278 (2004) 18-25. https://doi.org/10.1016/j.jcis.2004.05.029
[26] E. Guibal, E. Touraud, J. Roussy. Chitosan Interactions with Metal Ions and Dyes: Dissolved-state vs. Solid-state Application. World J. Microbiol. Biotechnol. 21 (2005) 913–920. https://doi.org/10.1007/s11274-004-6559-5
[27] R.A.A. Muzzarelli, J. Boudrant, D. Meyer, N. Manno,M. DeMarchis, M.G. Paoletti, Current views on fungal chitin/chitosan, human chitinases, food preservation, glucans, pectins and inulin: A tribute to Henri Braconnot, precursor of the carbohydrate polymers science, on the chitin bicentennial. Carbohydr. Polym. 87 (2012) 995–1012. https://doi.org/10.1016/j.carbpol.2011.09.063
[28] Wan Ngah, W., Teong, L., & Hanafiah, M. Adsorption of dyes and heavy metal ions by chitosan composites: A review. Carbohydr. Polym. 83(2011) 1446–1456. https://doi.org/10.1016/j.carbpol.2010.11.004
[29] K.A.G. Gusmão, L.V.A. Gurgel, T.M.S. Melo, L.F. Gil, Application of succinylated sugarcane bagasse as adsorbent to remove methylene blue and gentian violet from aqueous solutions – Kinetic and equilibrium studies. Dyes Pigm. 92 (2012) 967–974. https://doi.org/10.1016/j.dyepig.2011.09.005
[30] M. Sarkar, P. Majumdar, Application of response surface methodology for optimization of heavy metal biosorption using surfactant modified chitosan bead. Chem. Eng. J. 175 (2011) 376-387. https://doi.org/10.1016/j.cej.2011.09.125
[31] A.R. Cestari , E.F.S. Vieira, A.G.P. dos Santos, J.A. Mota, V.P. de Almeida. Adsorption of anionic dyes on chitosan beads. 1. The influence of the chemical structures of dyes and temperature on the adsorption kinetics. J. Colloid. Int. Sci. 280 (2004) 380–6. https://doi.org/10.1016/j.jcis.2004.08.007
[32] G.Gibbs, J.M. Tobin, E. Guibal. Influence of Chitosan Preprotonation on Reactive Black 5 Sorption Isotherms and Kinetics. Ind. Eng. Chem. Res. 43 (2004) 1–11. https://doi.org/10.1021/ie030352p
[33] A. Hebeish, R. Rafei, A. El-Shafei, Egypt. Crosslinking of chitosan with glutaraldehyde for removal of dyes and heavy metals ions from aqueous solutions. J. Chem. 47 (2004) 65–79. https://doi.org/10.1021/la402778x
[34] G.Z. Kyzas, P.I. Siafaka, D.A. Lambropoulou, N.K. Lazaridis, D.N. Bikiaris, Poly(itaconic acid)-Grafted Chitosan Adsorbents with Different Cross-Linking for Pb(II) and Cd(II) Uptake Langmuir. 30 (2014) 120–131.
[35] M.Y. Chan, S. Husseinsyah, S.T. Sam. Chitosan/corn cob biocomposite films by cross-linking with glutaraldehyde. BioResources 8(2013) 2910–2923. https://doi.org/10.15376/biores.8.2.2910-2923
[36] L. Liu, J. Zhang, R.C. Tang, Adsorption and functional properties of natural lac dye on chitosan fiber, React. Funct. Polym. 73 (2013) 1559–1566. https://doi.org/10.1016/j.reactfunctpolym.2013.08.007
[37] E. Guibal, P. McCarrick, JM Tobin. Comparison of the Sorption of Anionic Dyes on Activated Carbon and Chitosan Derivatives from Dilute Solutions. Sep Sci Technol. 38 (2003) 3049–73. https://doi.org/10.1081/SS-120022586
[38] M. Ruiz, AM Sastre, E. Palladium sorption on glutaraldehyde cross-linked chitosan. Guibal. React Funct Polym. 45 (2000) 155–73. https://doi.org/10.1016/S1381-5148(00)00019-5
[39] M.-S. Chiou, H.-Y. Li. Equilibrium and kinetic modeling of adsorption of reactive dye on cross-linked chitosan beads. J. Hazard. Mater. B 93 (2002) 233–248. https://doi.org/10.1016/S0304-3894(02)00030-4
[40] W.H. Cheung, Y.S. Szeto, G.McKay. Enhancing the adsorption capacities of acid dyes by chitosan nano particles. Bioresour. Technol. 100 (2009) 1143–1148. https://doi.org/10.1016/j.biortech.2008.07.071
[41] G. Dotto, J. Moura, T. Cadaval, L. Pinto. Application of chitosan films for the removal of food dyes from aqueous solutions by adsorption. Chem. Eng. J. 214 (2013) 8–16. https://doi.org/10.1016/j.cej.2012.10.027
[42] D. Balkose, H. Baltacioˇglu, Adsorption of heavy metal cations from aqueous solutions by wool fibers. J. Chem. Technol. Biotechnol. 54 (1992) 393–397. https://doi.org/10.1002/jctb.280540414
[43] W.W. Ngah, L. Teong, M. Hanafiah. Adsorption of dyes and heavy metal ions by chitosan composites: A review. Carbohydr. Polym. 83 (2011) 1446–1456. https://doi.org/10.1016/j.carbpol.2010.11.004
[44] M.N.R. Kumar. A review of chitin and chitosan applications. React. Funct. Poly. 46 (2000) 1–27. https://doi.org/10.1016/S1381-5148(00)00038-9
[45] M. Kaya, F. Dudakli, M. Asan-Ozusaglam, Y.S. Cakmak, T. Baran, A. Mentes, S. Erdogan. Porous and nanofiber α-chitosan obtained from blue crab (Callinectes sapidus) tested for antimicrobial and antioxidant activities. LWT- Food Sci. Technol. 65 (2016) 1109–1117.
[46] M. Chiou, M. H. Li. Adsorption behavior of reactive dye in aqueous solution on chemical cross-linked chitosan beads. Chemosphere 50 (2003) 1095–1105. https://doi.org/10.1016/S0045-6535(02)00636-7
[47] A. Shweta, P. Sonia. Pharmaceutical relevance of crosslinked chitosan in microparticulate drug delivery. Int. Res. J. Pharm. 4 (2013) 45–51.
[48] E. Guibal, P. M. Carrick, J.M. Tobin. Comparison of the Sorption of Anionic Dyes on Activated Carbon and Chitosan Derivatives from Dilute Solutions. Sep. Sci. Technol. 38 (2003) 3049–3073. https://doi.org/10.1081/SS-120022586
[49] R. Gaikwad, R., S. Misal. Sorption studies of methylene blue on silica gel. Int. J. Chem.Eng. A. 1(2010) 342–345. https://doi.org/10.7763/IJCEA.2010.V1.59
[50] V.K. Gupta, Suhas, Application of low-cost adsorbents for dye removal – A review J. Environ. Manag. 90 (2009) 2313–2342. https://doi.org/10.1016/j.jenvman.2008.11.017
[51] H.J. Kumari P. Krishnamoorthy. T.K.Arumugam S. Radhakrishnan D.vasudevan. An efficient removal of crystal violet dyes from waste water by adsorption onto TLAC/Chitosan composite: A novel low cost adsorbent. Int. J. Biol. Macromol. 96 (2017) 324-333. https://doi.org/10.1016/j.ijbiomac.2016.11.077
[52] S.Ali Khan, S. B. Khan, T. Kamal, M. Yasir, A. M. Asiri. Antibacterial nanocomposites based on chitosan/Co-MCM as a selective and efficient adsorbent for organic dyes. Int. J. Biol. Macromol. 91 (2016) 744–751. https://doi.org/10.1016/j.ijbiomac.2016.06.018
[53] S. Ali Khan, S. B. Khan, T. Kamal, M. Yasir, A. M. Asiri. CuO embedded chitosan spheres as antibacterial adsorbent for dyes. Int. J. Biol. Macromol. 88 (2016) 113–119. https://doi.org/10.1016/j.ijbiomac.2016.03.026
[54] R. Darvishi, Cheshmeh Soltani, A.R. Khataee , M. Safari , S.W. Joo. Preparation of bio-silica/chitosan nanocomposite for adsorption of a textile dye in aqueous solutions. Int. Biodeter Biodegr J. 85 (2013) 383-391. https://doi.org/10.1016/j.ibiod.2013.09.004
[55] H.Y. Zhu, R. Jiang, Y.Q. Fu, J.H. Jiang, L. Xiao, G.M. Zeng. Preparation, characterization and dye adsorption properties of g-Fe2O3/SiO2/chitosan composite Appl. Surf. Sci. 258 (2011) 1337-1344. https://doi.org/10.1016/j.apsusc.2011.09.045
[56] M.M.F. Silva, M.M. Oliveira, M.C. Avelino, M.G. Fonseca, R.K.S. Almeida, E.C. Silva Filho. Adsorption of an industrial anionic dye by modified-KSFmontmorillonite: evaluation of the kinetic, thermodynamic and equilibrium data. Chem. Eng. J. 203(2012) 259-268. https://doi.org/10.1016/j.cej.2012.07.009
[57] X. Zheng, X. Li, Jinyang Li, L. Wang, W. Jin, J. liu, Y. Pei, K. Tang. Efficient removal of anionic dye (Congo red) by dialdehyde microfibrillated cellulose/chitosan composite film with significantly improved stability in dye solution. Int. J. Biol. Macromol. 107 (2018) 283–289. https://doi.org/10.1016/j.ijbiomac.2017.08.169
[58] P. Banerjee, S. Roy, B. A. Mukhopadhayay, P. Das. Ultrasound assisted mixed azo dye adsorption by chitosan- graphene oxide nanocomposite. 117 (2017) 43-56.
[59] M. Ghaedi, A.M. Ghaedi, F. Abdi, M. Roosta, R. Sahraei, A. Daneshfar. Principal component analysis-artificial neural network and genetic algorithm optimization for removal of reactive orange 12 by copper sulfide nanoparticles-activated carbon. J. Ind. Eng. Chem. 20 (2014b) 787-795. https://doi.org/10.1016/j.jiec.2013.06.008
[60] L. Fan, C. Luo, M. Sun, H. Qiu, X. Li. Synthesis of magnetic-cyclodextrin–chitosan/graphene oxide as nanoadsorbent and its application in dye adsorption and removal. Colloids Surf B Biointerfaces. 103 (2013) 601– 607. https://doi.org/10.1016/j.colsurfb.2012.11.023
[61] M.A. Kamal, S. Bibi, S. W. Bokhari, A. H. Siddique, T. Yasin. Synthesis and adsorptive characteristics of novel chitosan/grapheme oxide nanocomposite for dye uptake React. Funct. Polym. 110 (2017) 21–29. https://doi.org/10.1016/j.reactfunctpolym.2016.11.002
[62] N. A. Travlou, G. Z. Kyzas, N. K. Lazaridis, E. A. Deliyanni. Functionalization of Graphite Oxide with Magnetic Chitosan for the Preparation of a Nanocomposite Dye Adsorbent. Langmuir 29 (2013)1657−1668. https://doi.org/10.1021/la304696y
[63] F.A. Taher, F.H. Kamal, N.A. Badawy, A.E Shrshr. Hierarchical magnetic/chitosan/graphene oxide 3D nanostructure as highly effective adsorbent Materials Res. Bull. 97 (2018) 361–368. https://doi.org/10.1016/j.materresbull.2017.09.023
[64] L. You, C. Huang, F. Lu, A. Wang, X. Liu, Q. Zhang. Facile synthesis of high performance porous magnetic chitosan-polyethylenimine polymer composite for Congo red removal. Int. J. Biol. Macromol. 107 (2018) 1620–1628. https://doi.org/10.1016/j.ijbiomac.2017.10.025
[65] M. A. Ahmed, N. M. Abdelbar, A. A. Mohamed. Molecular imprinted chitosan-TiO2 nanocomposite for the selective removal of Rose Bengal from wastewater. Int. J. Biol. Macromol. 107 (2018) 1046–1053. https://doi.org/10.1016/j.ijbiomac.2017.09.082
[66] C. Cao, L. Xiao, C. Chen, X. Shi, Q. Cao, L. Gao. In situ preparation of magnetic Fe3O4/chitosan nanoparticles via a novel reduction–precipitation method and their application in adsorption of reactive azo dye Powder Technology. 260 (2014) 90–97. https://doi.org/10.1016/j.powtec.2014.03.025
[67] H.Y. Zhu, R. Jiang, L. Xiao,W. Li, A novel magnetically separable γ-Fe2O3/crosslinked chitosan adsorbent: Preparation, characterization and adsorption application for removal of hazardous azo dye. J. Hazard. Mater. 179 (2010) 251–257. https://doi.org/10.1016/j.jhazmat.2010.02.087
[68] G. Z. Kyzas, P. I. Siafaka, E. G. Pavlidou, K. J.Chrissafis, D. N. Bikiaris. Synthesis and adsorption application of succinyl-grafted chitosan for the simultaneous removal of zinc and cationic dye from binary hazardous mixtures. Chem. Eng. J. 259 (2015) 438-448. https://doi.org/10.1016/j.cej.2014.08.019
[69] K. Pandiselvi, S. Thambidurai. Synthesis of porous chitosan–polyaniline/ZnO hybrid composite and application for removal of reactive orange 16 dye. Colloids Surf. B Biointer. 108 (2013) 229–238. https://doi.org/10.1016/j.colsurfb.2013.03.015
[70] U. Habiba, M. S. Islam, T. A. Siddique, A. M. Afifi, B. C. Ang. Adsorption and photocatalytic degradation of anionic dyes on Chitosan/PVA/Na–Titanate/TiO2 composites synthesized by solution casting method. Carbohy.Polym.149 (2016) 317–331. https://doi.org/10.1016/j.carbpol.2016.04.127