Advances in the Application of Nanomaterials and Nanosacled Materials in Physiology or Medicine: Now and the Future

$20.00

Description

Advances in the Application of Nanomaterials and Nanosacled Materials in Physiology or Medicine: Now and the Future

Uttam Pal, Sumit Kumar Pramanik

Nanomedicine is a booming field, however, the use of nanomaterials in medicine can be traced back thousands of years. Starting its journey in the dark ages of the gold ash in Indian traditional medicine through the Feynman’s futuristic concept of swallowing surgeon, the nanomedicine recently entered into the era of exponential growth. Due to the reduction in size, nanomaterials provide a unique advantage for application in biology. Like building a magic bullet for treating cancer or detecting disease, the use of nanoparticles is everywhere. In this chapter, we have discussed the current exciting developments in this field and what the future holds.

Keywords
Anticancer, Phototherapy, Sensing, Imaging, Drug Delivery, Swallowing Surgeons

Published online 7/1/2018, 32 pages

DOI: http://dx.doi.org/10.21741/9781945291739-7

Part of the book on Nanomaterials in Bio-Medical Applications

References
[1] A. Dance, Medical histories, Nature. (2016). doi:10.1038/537S52a.
[2] B.N. Singh, Prateeksha, G. Pandey, V. Jadaun, S. Singh, R. Bajpai, S. Nayaka, A.H. Naqvi, A.K.S. Rawat, D.K. Upreti, B.R. Singh, Development and characterization of a novel Swarna-based herbo-metallic colloidal nano-formulation – inhibitor of Streptococcus mutans quorum sensing, RSC Adv. 5 (2014) 5809–5822. doi:10.1039/C4RA11939H.
[3] D. Beaudet, S. Badilescu, K. Kuruvinashetti, A.S. Kashani, D. Jaunky, S. Ouellette, A. Piekny, M. Packirisamy, Comparative study on cellular entry of incinerated ancient gold particles (Swarna Bhasma) and chemically synthesized gold particles, Sci. Rep. 7 (2017) 10678. doi:10.1038/s41598-017-10872-3.
[4] P. Alonso-Cristobal, P. Vilela, A. El-Sagheer, E. Lopez-Cabarcos, T. Brown, O.L. Muskens, J. Rubio-Retama, A.G. Kanaras, Highly Sensitive DNA Sensor Based on Upconversion Nanoparticles and Graphene Oxide, ACS Appl. Mater. Interfaces. 7 (2015) 12422–12429. doi:10.1021/am507591u.
[5] T. Mocan, C.T. Matea, T. Pop, O. Mosteanu, A.D. Buzoianu, C. Puia, C. Iancu, L. Mocan, Development of nanoparticle-based optical sensors for pathogenic bacterial detection, J. Nanobiotechnology. 15 (2017) 25. doi:10.1186/s12951-017-0260-y.
[6] S.-S. Kim, M. Sun Park, O. Jeon, C. Yong Choi, B.-S. Kim, Poly(lactide-co-glycolide)/hydroxyapatite composite scaffolds for bone tissue engineering, Biomaterials. 27 (2006) 1399–1409. doi:10.1016/j.biomaterials.2005.08.016.
[7] M. Sato, M.A. Sambito, A. Aslani, N.M. Kalkhoran, E.B. Slamovich, T.J. Webster, Increased osteoblast functions on undoped and yttrium-doped nanocrystalline hydroxyapatite coatings on titanium, Biomaterials. 27 (2006) 2358–2369. doi:10.1016/j.biomaterials.2005.10.041.
[8] X. Michalet, F.F. Pinaud, L.A. Bentolila, J.M. Tsay, S. Doose, J.J. Li, G. Sundaresan, A.M. Wu, S.S. Gambhir, S. Weiss, Quantum dots for live cells, in vivo imaging, and diagnostics, Science. 307 (2005) 538–544. doi:10.1126/science.1104274.
[9] N.L. Rosi, C.A. Mirkin, Nanostructures in Biodiagnostics, Chem. Rev. 105 (2005) 1547–1562. doi:10.1021/cr030067f.
[10] J.-H. Lee, Y.-M. Huh, Y. Jun, J. Seo, J. Jang, H.-T. Song, S. Kim, E.-J. Cho, H.-G. Yoon, J.-S. Suh, J. Cheon, Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging, Nat. Med. 13 (2006) nm1467. doi:10.1038/nm1467.
[11] D. Kim, S. Park, J.H. Lee, Y.Y. Jeong, S. Jon, Antibiofouling Polymer-Coated Gold Nanoparticles as a Contrast Agent for in Vivo X-ray Computed Tomography Imaging, J. Am. Chem. Soc. 129 (2007) 7661–7665. doi:10.1021/ja071471p.
[12] J.H. Sakamoto, B.R. Smith, B. Xie, S.I. Rokhlin, S.C. Lee, M. Ferrari, The molecular analysis of breast cancer utilizing targeted nanoparticle based ultrasound contrast agents, Technol. Cancer Res. Treat. 4 (2005) 627–636. doi:10.1177/153303460500400606.
[13] M.G. Bawendi, M.L. Steigerwald, L.E. Brus, The Quantum Mechanics of Larger Semiconductor Clusters (“Quantum Dots”), Annu. Rev. Phys. Chem. 41 (1990) 477–496. doi:10.1146/annurev.pc.41.100190.002401.
[14] B. Banerji, S.K. Pramanik, U. Pal, N.C. Maiti, Conformation and cytotoxicity of a tetrapeptide constellated with alternative D- and L-proline, RSC Adv. 2 (2012) 6744–6747. doi:10.1039/C2RA20616A.
[15] M. Maity, S.K. Pramanik, U. Pal, B. Banerji, N.C. Maiti, Copper(I) oxide nanoparticle and tryptophan as its biological conjugate: a modulation of cytotoxic effects, J. Nanoparticle Res. 16 (2014) 2179. doi:10.1007/s11051-013-2179-z.
[16] A. Alam, S. Haldar, H.V. Thulasiram, R. Kumar, M. Goyal, M.S. Iqbal, C. Pal, S. Dey, S. Bindu, S. Sarkar, U. Pal, N.C. Maiti, U. Bandyopadhyay, Novel anti-inflammatory activity of epoxyazadiradione against macrophage migration inhibitory factor: inhibition of tautomerase and proinflammatory activities of macrophage migration inhibitory factor, J. Biol. Chem. 287 (2012) 24844–24861. doi:10.1074/jbc.M112.341321.
[17] S. Saha, C. Acharya, U. Pal, S.R. Chowdhury, K. Sarkar, N.C. Maiti, P. Jaisankar, H.K. Majumder, A novel spirooxindole derivative inhibits the growth of Leishmania donovani parasite both in vitro and in vivo by targeting type IB topoisomerase, Antimicrob. Agents Chemother. (2016) AAC.00352-16. doi:10.1128/AAC.00352-16.
[18] D. Vilela, M.M. Stanton, J. Parmar, S. Sánchez, Microbots Decorated with Silver Nanoparticles Kill Bacteria in Aqueous Media, ACS Appl. Mater. Interfaces. 9 (2017) 22093–22100. doi:10.1021/acsami.7b03006.
[19] K. Zheng, M.I. Setyawati, D.T. Leong, J. Xie, Antimicrobial Gold Nanoclusters, ACS Nano. 11 (2017) 6904–6910. doi:10.1021/acsnano.7b02035.
[20] A. Sau, S. Sanyal, K. Bera, S. Sen, A.K. Mitra, U. Pal, P.K. Chakraborty, S. Ganguly, B. Satpati, C. Das, S. Basu, DNA Damage and Apoptosis Induction in Cancer Cells by Chemically Engineered Thiolated Riboflavin Gold Nanoassembly, ACS Appl. Mater. Interfaces. (2018). doi:10.1021/acsami.7b18837.
[21] A. Sau, S. Sen, K. Bera, U. Pal, B. Satpati, C. Das, S. Basu, Nuclear Uptake of Thiolated Riboflavin Gold Nanoassembly: DNA Damage and Apoptosis Induction in Cancer Cell, Biophys. J. 114 (2018) 360a. doi:10.1016/j.bpj.2017.11.2002.
[22] M. Bardhan, A. Majumdar, S. Jana, T. Ghosh, U. Pal, S. Swarnakar, D. Senapati, Mesoporous silica for drug delivery: Interactions with model fluorescent lipid vesicles and live cells, J. Photochem. Photobiol. B. 178 (2018) 19–26. doi:10.1016/j.jphotobiol.2017.10.023.
[23] P.C.S. Suman Bhandary Arijit Bhowmik, Aparajita Ghosh, Suchandrima Saha, Uttam Pal, Nivedita Roy, Nilanjan Chakraborty, Arijit Chakraborty, Mrinal K. Ghosh, Targeting IL-6/IL-6R Signaling Axis in Triple-Negative Breast Cancer by a Novel Nifetepimine-Loaded Cascade pH Responsive Mesoporous Silica Based Nanoplatform, Glob. J. Nanomedicine. 3 (2017) 555609. doi:10.19080/GJN.2017.03.555609.
[24] S. Ghosh, A. Adhikary, S. Chakraborty, P. Bhattacharjee, M. Mazumder, S. Putatunda, M. Gorain, A. Chakraborty, G.C. Kundu, T. Das, P.C. Sen, Cross-talk between Endoplasmic Reticulum (ER) Stress and the MEK/ERK Pathway Potentiates Apoptosis in Human Triple Negative Breast Carcinoma Cells ROLE OF A DIHYDROPYRIMIDONE, NIFETEPIMINE, J. Biol. Chem. 290 (2015) 3936–3949. doi:10.1074/jbc.M114.594028.
[25] B. Banerji, S.K. Pramanik, U. Pal, N.C. Maiti, Dipeptide derived from benzylcystine forms unbranched nanotubes in aqueous solution, J. Nanostructure Chem. 3 (2013) 12. doi:10.1186/2193-8865-3-12.
[26] B. Banerji, M. Chatterjee, U. Pal, N.C. Maiti, Formation of Annular Protofibrillar Assembly by Cysteine Tripeptide: Unraveling the Interactions with NMR, FTIR, and Molecular Dynamics, J. Phys. Chem. B. 121 (2017) 6367–6379. doi:10.1021/acs.jpcb.7b04373.
[27] S. Mura, J. Nicolas, P. Couvreur, Stimuli-responsive nanocarriers for drug delivery, Nat. Mater. 12 (2013) 991–1003. doi:10.1038/nmat3776.
[28] N. Kamaly, B. Yameen, J. Wu, O.C. Farokhzad, Degradable Controlled-Release Polymers and Polymeric Nanoparticles: Mechanisms of Controlling Drug Release, Chem. Rev. 116 (2016) 2602–2663. doi:10.1021/acs.chemrev.5b00346.
[29] E. Delebecq, J.-P. Pascault, B. Boutevin, F. Ganachaud, On the Versatility of Urethane/Urea Bonds: Reversibility, Blocked Isocyanate, and Non-isocyanate Polyurethane, Chem. Rev. 113 (2013) 80–118. doi:10.1021/cr300195n.
[30] S.K. Pramanik, P. Losada-Pérez, G. Reekmans, R. Carleer, M. D’Olieslaeger, D. Vanderzande, P. Adriaensens, A. Ethirajan, Physicochemical characterizations of functional hybrid liposomal nanocarriers formed using photo-sensitive lipids, Sci. Rep. 7 (2017) 46257. doi:10.1038/srep46257.
[31] J. Kreuter, Nanoparticles as adjuvants for vaccines, Pharm. Biotechnol. 6 (1995) 463–472.
[32] A.E. Gregory, R. Titball, D. Williamson, Vaccine delivery using nanoparticles, Front. Cell. Infect. Microbiol. 3 (2013). doi:10.3389/fcimb.2013.00013.
[33] R. Rappuoli, C.W. Mandl, S. Black, E. De Gregorio, Vaccines for the twenty-first century society, Nat. Rev. Immunol. 11 (2011) 865–872. doi:10.1038/nri3085.
[34] D. Skrastina, I. Petrovskis, I. Lieknina, J. Bogans, R. Renhofa, V. Ose, A. Dishlers, Y. Dekhtyar, P. Pumpens, Silica Nanoparticles as the Adjuvant for the Immunisation of Mice Using Hepatitis B Core Virus-Like Particles, PLoS ONE. 9 (2014) e114006. doi:10.1371/journal.pone.0114006.
[35] J.T. Jørgensen, K. Norregaard, P. Tian, P.M. Bendix, A. Kjaer, L.B. Oddershede, Single Particle and PET-based Platform for Identifying Optimal Plasmonic Nano-Heaters for Photothermal Cancer Therapy, Sci. Rep. 6 (2016) 30076. doi:10.1038/srep30076.
[36] B. Bahmani, D. Bacon, B. Anvari, Erythrocyte-derived photo-theranostic agents: hybrid nano-vesicles containing indocyanine green for near infrared imaging and therapeutic applications, Sci. Rep. 3 (2013) 2180. doi:10.1038/srep02180.
[37] V. Pansare, S. Hejazi, W. Faenza, R.K. Prud’homme, Review of Long-Wavelength Optical and NIR Imaging Materials: Contrast Agents, Fluorophores and Multifunctional Nano Carriers, Chem. Mater. Publ. Am. Chem. Soc. 24 (2012) 812–827. doi:10.1021/cm2028367.
[38] N. Goswami, Z. Luo, X. Yuan, D.T. Leong, J. Xie, Engineering gold-based radiosensitizers for cancer radiotherapy, Mater. Horiz. 4 (2017) 817–831. doi:10.1039/C7MH00451F.
[39] G. Lalwani, A.M. Henslee, B. Farshid, L. Lin, F.K. Kasper, Y.-X. Qin, A.G. Mikos, B. Sitharaman, Two-Dimensional Nanostructure-Reinforced Biodegradable Polymeric Nanocomposites for Bone Tissue Engineering, Biomacromolecules. 14 (2013) 900–909. doi:10.1021/bm301995s.
[40] E. Gazit, Self-assembled peptide nanostructures: the design of molecular building blocks and their technological utilization, Chem. Soc. Rev. 36 (2007) 1263–1269. doi:10.1039/B605536M.
[41] N. Stephanopoulos, J.H. Ortony, S.I. Stupp, Self-Assembly for the Synthesis of Functional Biomaterials, Acta Mater. 61 (2013) 912–930. doi:10.1016/j.actamat.2012.10.046.
[42] G. Fichman, E. Gazit, Self-assembly of short peptides to form hydrogels: design of building blocks, physical properties and technological applications, Acta Biomater. 10 (2014) 1671–1682. doi:10.1016/j.actbio.2013.08.013.
[43] N. Annabi, J.W. Nichol, X. Zhong, C. Ji, S. Koshy, A. Khademhosseini, F. Dehghani, Controlling the Porosity and Microarchitecture of Hydrogels for Tissue Engineering, Tissue Eng. Part B Rev. 16 (2010) 371–383. doi:10.1089/ten.teb.2009.0639.
[44] S.K. Pramanik, S. Sreedharan, H. Singh, N.H. Green, C. Smythe, J.A. Thomas, A. Das, Imaging cellular trafficking processes in real time using lysosome targeted up-conversion nanoparticles, Chem. Commun. (2017). doi:10.1039/C7CC08185E.
[45] X. Kang, X. Guo, X. Niu, W. An, S. Li, Z. Liu, Y. Yang, N. Wang, Q. Jiang, C. Yan, H. Wang, Q. Zhang, Photothermal therapeutic application of gold nanorods-porphyrin-trastuzumab complexes in HER2-positive breast cancer, Sci. Rep. 7 (2017) 42069. doi:10.1038/srep42069.
[46] F. Fu, L. Shang, Z. Chen, Y. Yu, Y. Zhao, Bioinspired living structural color hydrogels, Sci. Robot. 3 (2018) eaar8580. doi:10.1126/scirobotics.aar8580.
[47] U. Pal, S.K. Pramanik, B. Bhattacharya, B. Banerji, N.C. Maiti, Binding interaction of a novel fluorophore with serum albumins: steady state fluorescence perturbation and molecular modeling analysis, SpringerPlus. 4 (2015) 548. doi:10.1186/s40064-015-1333-8.
[48] U. Pal, Interaction of proteins with small molecules and peptides, Doctoral dissertation, Jadavpur University, 2016. http://www.eprints.iicb.res.in/id/eprint/2550 (accessed September 9, 2016).
[49] K. Bera, A. Sau, P. Mondal, R. Mukherjee, D. Mookherjee, A. Metya, A.K. Kundu, D. Mandal, B. Satpati, O. Chakrabarti, S. Basu, Metamorphosis of Ruthenium-Doped Carbon Dots: In Search of the Origin of Photoluminescence and Beyond, Chem. Mater. 28 (2016) 7404–7413. doi:10.1021/acs.chemmater.6b03008.
[50] G.V. Martins, A.P.M. Tavares, E. Fortunato, M.G.F. Sales, Paper-Based Sensing Device for Electrochemical Detection of Oxidative Stress Biomarker 8-Hydroxy-2′-deoxyguanosine (8-OHdG) in Point-of-Care, Sci. Rep. 7 (2017) 14558. doi:10.1038/s41598-017-14878-9.
[51] Singh K., Solanki Pratima R., Basu Tinku, Malhotra B. D., Polypyrrole/multiwalled carbon nanotubes‐based biosensor for cholesterol estimation, Polym. Adv. Technol. 23 (2011) 1084–1091. doi:10.1002/pat.2020.
[52] I.K. Herrmann, A. Schlegel, R. Graf, C.M. Schumacher, N. Senn, M. Hasler, S. Gschwind, A.-M. Hirt, D. Günther, P.-A. Clavien, W.J. Stark, B. Beck-Schimmer, Nanomagnet-based removal of lead and digoxin from living rats, Nanoscale. 5 (2013) 8718–8723. doi:10.1039/C3NR02468G.
[53] J.H. Kang, M. Super, C.W. Yung, R.M. Cooper, K. Domansky, A.R. Graveline, T. Mammoto, J.B. Berthet, H. Tobin, M.J. Cartwright, A.L. Watters, M. Rottman, A. Waterhouse, A. Mammoto, N. Gamini, M.J. Rodas, A. Kole, A. Jiang, T.M. Valentin, A. Diaz, K. Takahashi, D.E. Ingber, An extracorporeal blood-cleansing device for sepsis therapy, Nat. Med. 20 (2014) 1211. doi:10.1038/nm.3640.
[54] C.C. Berry, A.S.G. Curtis, Functionalisation of magnetic nanoparticles for applications in biomedicine, J. Phys. Appl. Phys. 36 (2003) R198. doi:10.1088/0022-3727/36/13/203.
[55] J.-J. Lee, K.J. Jeong, M. Hashimoto, A.H. Kwon, A. Rwei, S.A. Shankarappa, J.H. Tsui, D.S. Kohane, Synthetic Ligand-Coated Magnetic Nanoparticles for Microfluidic Bacterial Separation from Blood, Nano Lett. 14 (2014) 1–5. doi:10.1021/nl3047305.
[56] I.K. Herrmann, M. Urner, S. Graf, C.M. Schumacher, B. Roth-Z’graggen, M. Hasler, W.J. Stark, B. Beck-Schimmer, Endotoxin Removal by Magnetic Separation-Based Blood Purification, Adv. Healthc. Mater. 2 (2013) 829–835. doi:10.1002/adhm.201200358.
[57] C.M. Schumacher, I.K. Herrmann, S.B. Bubenhofer, S. Gschwind, A.-M. Hirt, B. Beck-Schimmer, D. Günther, W.J. Stark, Quantitative Recovery of Magnetic Nanoparticles from Flowing Blood: Trace Analysis and the Role of Magnetization, Adv. Funct. Mater. 23 (2013) 4888–4896. doi:10.1002/adfm.201300696.
[58] C.W. Yung, J. Fiering, A.J. Mueller, D.E. Ingber, Micromagnetic–microfluidic blood cleansing device, Lab. Chip. 9 (2009) 1171–1177. doi:10.1039/B816986A.
[59] Z. Fan, M. Shelton, A.K. Singh, D. Senapati, S.A. Khan, P.C. Ray, Multifunctional Plasmonic Shell–Magnetic Core Nanoparticles for Targeted Diagnostics, Isolation, and Photothermal Destruction of Tumor Cells, ACS Nano. 6 (2012) 1065–1073. doi:10.1021/nn2045246.
[60] E.J. Kwon, J.H. Lo, S.N. Bhatia, Smart nanosystems: Bio-inspired technologies that interact with the host environment, Proc. Natl. Acad. Sci. U. S. A. 112 (2015) 14460–14466. doi:10.1073/pnas.1508522112.
[61] A. Coskun, M. Banaszak, R. Dean Astumian, J. Fraser Stoddart, B. A. Grzybowski, Great expectations: can artificial molecular machines deliver on their promise?, Chem. Soc. Rev. 41 (2012) 19–30. doi:10.1039/C1CS15262A.
[62] R. Van Noorden, D. Castelvecchi, World’s tiniest machines win chemistry Nobel, Nat. News. 538 (2016) 152. doi:10.1038/nature.2016.20734.
[63] J.C. Barnes, C.A. Mirkin, Profile of Jean-Pierre Sauvage, Sir J. Fraser Stoddart, and Bernard L. Feringa, 2016 Nobel Laureates in Chemistry, Proc. Natl. Acad. Sci. 114 (2017) 620–625. doi:10.1073/pnas.1619330114.
[64] C.O. Dietrich-Buchecker, J.P. Sauvage, J.P. Kintzinger, Une nouvelle famille de molecules : les metallo-catenanes, Tetrahedron Lett. 24 (1983) 5095–5098. doi:10.1016/S0040-4039(00)94050-4.
[65] P.R. Ashton, T.T. Goodnow, A.E. Kaifer, M.V. Reddington, A.M.Z. Slawin, N. Spencer, J.F. Stoddart, C. Vicent, D.J. Williams, A [2] Catenane Made to Order, Angew. Chem. Int. Ed. Engl. 28 (1989) 1396–1399. doi:10.1002/anie.198913961.
[66] R.A. Bissell, E. Córdova, A.E. Kaifer, J.F. Stoddart, A chemically and electrochemically switchable molecular shuttle, Nature. 369 (1994) 369133a0. doi:10.1038/369133a0.
[67] N. Koumura, R.W.J. Zijlstra, R.A. van Delden, N. Harada, B.L. Feringa, Light-driven monodirectional molecular rotor, Nature. 401 (1999) 43646. doi:10.1038/43646.
[68] T. Kudernac, N. Ruangsupapichat, M. Parschau, B. Maciá, N. Katsonis, S.R. Harutyunyan, K.-H. Ernst, B.L. Feringa, Electrically driven directional motion of a four-wheeled molecule on a metal surface, Nature. 479 (2011) nature10587. doi:10.1038/nature10587.
[69] H. Wang, M. Pumera, Fabrication of Micro/Nanoscale Motors, Chem. Rev. 115 (2015) 8704–8735. doi:10.1021/acs.chemrev.5b00047.
[70] K.K. Dey, A. Sen, Chemically Propelled Molecules and Machines, J. Am. Chem. Soc. 139 (2017) 7666–7676. doi:10.1021/jacs.7b02347.
[71] F. Peng, Y. Tu, D. A. Wilson, Micro/nanomotors towards in vivo application: cell, tissue and biofluid, Chem. Soc. Rev. 46 (2017) 5289–5310. doi:10.1039/C6CS00885B.
[72] H. Ceylan, J. Giltinan, K. Kozielski, M. Sitti, Mobile microrobots for bioengineering applications, Lab. Chip. 17 (2017) 1705–1724. doi:10.1039/C7LC00064B.
[73] X.-Z. Chen, M. Hoop, F. Mushtaq, E. Siringil, C. Hu, B.J. Nelson, S. Pané, Recent developments in magnetically driven micro- and nanorobots, Appl. Mater. Today. 9 (2017) 37–48. doi:10.1016/j.apmt.2017.04.006.
[74] A.E. Marras, L. Zhou, H.-J. Su, C.E. Castro, Programmable motion of DNA origami mechanisms, Proc. Natl. Acad. Sci. 112 (2015) 713–718. doi:10.1073/pnas.1408869112.
[75] B. Jang, E. Gutman, N. Stucki, B.F. Seitz, P.D. Wendel-García, T. Newton, J. Pokki, O. Ergeneman, S. Pané, Y. Or, B.J. Nelson, Undulatory Locomotion of Magnetic Multilink Nanoswimmers, Nano Lett. 15 (2015) 4829–4833. doi:10.1021/acs.nanolett.5b01981.
[76] J. Katuri, X. Ma, M.M. Stanton, S. Sánchez, Designing Micro- and Nanoswimmers for Specific Applications, Acc. Chem. Res. 50 (2017) 2–11. doi:10.1021/acs.accounts.6b00386.
[77] T. Li, J. Li, K.I. Morozov, Z. Wu, T. Xu, I. Rozen, A.M. Leshansky, L. Li, J. Wang, Highly Efficient Freestyle Magnetic Nanoswimmer, Nano Lett. 17 (2017) 5092–5098. doi:10.1021/acs.nanolett.7b02383.
[78] X. Ma, A.C. Hortelão, T. Patiño, S. Sánchez, Enzyme Catalysis To Power Micro/Nanomachines, ACS Nano. 10 (2016) 9111–9122. doi:10.1021/acsnano.6b04108.
[79] E. Del Grosso, A.-M. Dallaire, A. Vallée-Bélisle, F. Ricci, Enzyme-Operated DNA-Based Nanodevices, Nano Lett. 15 (2015) 8407–8411. doi:10.1021/acs.nanolett.5b04566.
[80] K. Yehl, A. Mugler, S. Vivek, Y. Liu, Y. Zhang, M. Fan, E.R. Weeks, K. Salaita, High-speed DNA-based rolling motors powered by RNase H, Nat. Nanotechnol. 11 (2015) nnano.2015.259. doi:10.1038/nnano.2015.259.
[81] D. Ahmed, T. Baasch, B. Jang, S. Pane, J. Dual, B.J. Nelson, Artificial Swimmers Propelled by Acoustically Activated Flagella, Nano Lett. 16 (2016) 4968–4974. doi:10.1021/acs.nanolett.6b01601.
[82] W.Z. Teo, M. Pumera, Motion Control of Micro-/Nanomotors, Chem. – Eur. J. 22 (2016) 14796–14804. doi:10.1002/chem.201602241.
[83] Y. Tu, F. Peng, D.A. Wilson, Motion Manipulation of Micro- and Nanomotors, Adv. Mater. 29 (2017) n/a-n/a. doi:10.1002/adma.201701970.
[84] T. Ding, V.K. Valev, A.R. Salmon, C.J. Forman, S.K. Smoukov, O.A. Scherman, D. Frenkel, J.J. Baumberg, Light-induced actuating nanotransducers, Proc. Natl. Acad. Sci. 113 (2016) 5503–5507. doi:10.1073/pnas.1524209113.
[85] I.S.M. Khalil, H.C. Dijkslag, L. Abelmann, S. Misra, MagnetoSperm: A microrobot that navigates using weak magnetic fields, Appl. Phys. Lett. 104 (2014) 223701. doi:10.1063/1.4880035.
[86] H. Kim, U.K. Cheang, M.J. Kim, K. Lee, Obstacle avoidance method for microbiorobots using electric field control, in: 4th Annu. IEEE Int. Conf. Cyber Technol. Autom. Control Intell., 2014: pp. 117–122. doi:10.1109/CYBER.2014.6917446.
[87] H. Kim, M.J. Kim, Electric Field Control of Bacteria-Powered Microrobots Using a Static Obstacle Avoidance Algorithm, IEEE Trans. Robot. 32 (2016) 125–137. doi:10.1109/TRO.2015.2504370.
[88] Y. Yoshizumi, H. Suzuki, Self-Propelled Metal–Polymer Hybrid Micromachines with Bending and Rotational Motions, ACS Appl. Mater. Interfaces. 9 (2017) 21355–21361. doi:10.1021/acsami.7b03656.