Synthesis of Nanoparticles through Thermal Decomposition of Organometallic Materials and Application for Biological Environment


Synthesis of Nanoparticles through Thermal Decomposition of Organometallic Materials and Application for Biological Environment

Ashis Bhattacharjee, Madhusudan Roy

Materials with structure at the nanoscale often offer unique optical, electronic, or mechanical properties and in turn find applications in different areas. The state of the art activities in nano-science and nano-technology have sparked the expectations to run into the challenges in the field of renewable energy, medicine and environment surveillance. There are different methods to grow nano-structures and the synthesis of nanoparticles is broadly classified under two processes such as ‘Top Down’ and ‘Bottom Up’. Among different synthesis techniques for preparing metal/oxide nanoparticles, thermal decomposition of organometallic compounds at relatively low temperatures becomes increasingly important and useful.

Nanoscale, Nanoparticle, Thermal Decomposition, Organometallic Compound, Metal/Oxide Nanoparticle

Published online 7/1/2018, 23 pages


Part of the book on Nanomaterials in Bio-Medical Applications

[1] N.R. Jana, L. Gearheart, C.J. Murphy, ‘Seed-Mediated Growth Approach for Shape-Controlled Synthesis of Spheroidal and Rod-like Gold Nanoparticles Using a Surfactant Template’, Adv. Mater.13 (2001) 1389-1393.<1389::AID-ADMA1389>3.0.CO;2-F
[2] J. Gao, C.M. Bender, C.J. Murphy, ‘Dependence of the Gold Nanorod Aspect Ratio on the Nature of the Directing Surfactant in Aqueous Solution’, Langmuir 19 (2003) 9065-9070.
[3] A. Gole, C.J. Murphy, ‘Seed-Mediated Synthesis of Gold Nanorods:  Role of the Size and Nature of the Seed’, Chem. Mater. 16 (2004) 3633-3640.
[4] T.K. Sau, C.J. Murphy, Room Temperature, ‘High-Yield Synthesis of Multiple Shapes of Gold Nanoparticles in Aqueous Solution’, J. Am. Chem. Soc. 126 (2004) 8648-8649.
[5] Y. Wang, Y. Zheng, C.Z. Huang, Y. Xia, ‘Synthesis of Ag Nanocubes 18–32 nm in Edge Length: The Effects of Polyol on Reduction Kinetics, Size Control, and Reproducibility’, J. Am. Chem. Soc. 135 (2013) 1941-1951.
[6] Y. Sun, Y. Xia, ‘Shape-Controlled Synthesis of Gold and Silver Nanoparticles’, Science 298 (2002) 2176-2179.
[7] S.H. Im, Y.T. Lee, B. Wiley, Y. Xia,‘ Large-Scale Synthesis of Silver Nanocubes: The Role of HCl in Promoting Cube Perfection and Monodispersity’, Angew. Chem., Int. Ed. 44 (2005) 2154-2157.
[8] P. Harmankova, M. Hermanek, R. Zboril, ‘Thermal Decomposition of Ferric Oxalate Tetrahydrate in Oxidative and Inert Atmospheres: The Role of Ferrous Oxalate as an Intermediate’, Eur. J. Inorg. Chem. (2010) 1110-1118.
[9] Y.C. Zhang, J.Y. Tang, X.Y. Hu, ‘Controllable Synthesis and Magnetic Properties of Pure Hematite and Maghemite Nanocrystals from a Molecular Precursor’, J. Alloys. Compd. 462 (2008) 24-28.
[10] H.H. Kung, Transition Metal Oxides: Surface Chemistry and Catalysis, in : B. Delmon, J. T. Yates (Eds.), Studies in Surface Science and Catalysis, 1st Ed., Vol. 45, Elsevier, Amsterdam, The Netherlands, 1989.
[11] N. Pinna, G. Garnweitner, M. Antonietti, M. Niederberger,‘A General Nonaqueous Route to Binary Metal Oxide Nanocrystals Involving a C−C Bond Cleavage’, J. Am. Chem. Soc. 127 (2005) 5608-5612.
[12] S. Chaianansutcharit, O. Mekasuwandumrong, P. Praserthdam, ‘Synthesis of Fe2O3 Nanoparticles in Different Reaction Media’, Ceram. Inter. 33 (2007) 697-699.
[13] Z.X. Tang, S. Nafis, C.M. Sorensen, G.C. Hadjipanayis, K.J. Klabunde, ‘Magnetic Properties of Aerosol Synthesized Iron Oxide Particles’, J. Magn. Magn. Mater. 80 (1989) 285-289.
[14] S.J. Campbell, W.A. Kaczmarek, G.M. Wang, ‘Mechanochemical Transformation of Hematite to Magnetite’, Nanostructured. Mater. 6 (1995) 735.
[15] A. Bhattacharjee, ‘A Legendary Molecular Magnetic System: A[M(II)M(III)(C2O4)3]’, Curr. Inorg. Chem. 6 (2017) 162-180.
[16] H. Tamaki, J. Zhong, N. Matsumoto, S. Ida, M. Koikawa, N. Achiwa, Y. Hashimoto, H. Ōkawa, ‘Design of Metal-Complex Magnets. Syntheses and Magnetic Properties of Mixed-Metal Assemblies {NBu4[MCr(ox)3]}∞ (NBu4+ = tetra(n-butyl)ammonium ion; ox2- = oxalate ion; M = Mn2+, Fe2+, Co2+, Ni2+, Cu2+, Zn2+)’, J. Am. Chem. Soc. 114 (1992) 6974-6979.
[17] H. Ōkawa, N. Matsumoto, H. Tamaki, M. Ohba, ‘Ferrimagnetic Mixed-Metal Assemblies {NBu4[MFe(ox)3]}∞’, Mol. Cryst. Liq. Cryst. 233 (1993) 257-262.
[18] K.E. Neo, Y.Y. Ong, H.V. Huynh, T.S. Andy Horr, ‘A Single-molecular Pathway from Heterometallic MM′ (M = BaII, MnII; M′ = CrIII) Oxalato Complexes to Intermetallic Composite Oxides’, J. Mater. Chem. 17 (2007) 1002-1006.
[19] A. Bhattacharjee, D. Roy, M. Roy, S. Chakraborty, A. De, J. Kusz, W. Hofmeister, ‘Rod-like Ferrites Obtained through Thermal Degradation of a Molecular Ferrimagnet’, J. Alloy. Comps. 503 (2010) 449-453.
[20] D. Roy, M. Roy, M. Zubko, J. Kusz, A. Bhattacharjee, ‘Solid-State Thermal Reaction of a Molecular Material and Solventless Synthesis of Iron Oxide’, Int. J. Thermophys. 37 (2016) 93-108.
[21] A. Bhattacharjee, D. Roy, M. Roy, ‘Thermal Degradation of a Molecular Magnetic Material: {N(n-C4H9)4[FeIIFeIII(C2O4)3]}∞’, J. Therm. Anal. Cal. 109 (2012) 1423-1427.
[22] A. Bhattacharjee, D. Roy, M. Roy, ‘Thermal Decomposition of Molecular Materials {N(n-C4H9)4[MIIFeIII(C2O4)3]}∞,MII = Zn, Co, Fe’, Int. J. Thermophys. 33 (2012) 2351-2365.
[23] D. Roy, Study of thermal decomposition of some oxalate-based molecular materials leading to metal oxides (Ph.D. Thesis, Visva-Bharati University, India, 2013).
[24] G. Huang, J. Weng, ‘Syntheses of Carbon Nanomaterials by Ferrocene’, Curr. Org. Chem. 15 (2011) 3653-3666.
[25] N. Koprinarov, M. Konstantinova, M. Marinov, ‘Ferromagnetic Nanomaterials Obtained by Thermal Decomposition of Ferrocene’, Solid State Phenomena 159 (2010) 105-108.
[26] K. Elihn, L. Landstörm, O. Alm, M. Boman, P. Heszler, ‘Size and Structure of Nanoparticles formed via Ultraviolet Photolysis of Ferrocene’, J. Appl. Phys. 101 (2007) 34311-34315.
[27] E.P. Sajitha, V. Prasad, S.V. Subramanyam, A.K. Mishra, S. Sarkar, C. Bansal, ‘Structural, Magnetic and Mössbauer Studies of Iron Inclusions in a Carbon Matrix’, J. Magn. Magn. Mater. 313 (2007) 329-336.
[28] D. Amara, J. Grinblat, S. Margel, ‘Solventless Thermal Decomposition of Ferrocene as a New Approach for One-Step Synthesis of Magnetite Nanocubes and Nanospheres’, J. Mater. Chem. 22 (2012) 2188-2195.
[29] S. Saremi-Yarahmadi, A.A. Tahir, B. Vaidyanathan, K.G.U. Wijayantha, ‘Fabrication of Nanostructured α-Fe2O3 Electrodes using Ferrocene for Solar Hydrogen Generation’, Mater. Lett. 63 (2009) 523-526.
[30] M. Rooth, A. Johansson, M. Boman, A. Hårsta, ‘Atomic Layer Deposition of Iron Oxide Thin Films and Nanotubes using Ferrocene and Oxygen as Precursors’, Chem. Vap. Deposition 14 (2008) 67-70.
[31] R. Shah, X.F. Zhang, X. An, S. Kar, S. Talapatra, ‘Ferrocene Derived Carbon Nanotubes and Their Application as Electrochemical Double Layer Capacitor Electrodes’, J. Nanosci. Nanotechnol. 10 (2010) 4043-4048.
[32] A.G. Nasibulin, S.G. Shandakov, A.S. Anisimov, D. Gonzalez, H. Jiang, M. Pudas, P. Queipo, E.I. Kauppinen, ‘Charging of Aerosol Products during Ferrocene Vapor Decomposition in N2 and CO Atmospheres’, J. Phys. Chem. 112 (2008) 5762-5769.
[33] A. Barreiro, S. Hampel, M.H. Rümmeli, C.K. Kramberger, A. Grüneis, K. Biedermann, A. Leonhardt, T. Gemming, B. Büchner, A. Bachtold, T. Pichler, ‘Thermal Decomposition of Ferrocene as a Method for Production of Single-Walled Carbon Nanotubes without Additional Carbon Sources’, J. Phys. Chem. B 110 (2006) 20973-20977.
[34] K.E. Kim, K.J. Kim, W.S. Jung, S.Y. Bae, J. Park, J. Choi, J. Choo, ‘Investigation on the Temperature-Dependent Growth Rate of Carbon Nanotubes using Chemical Vapor Deposition of Ferrocene and Acetylene’, Chem. Phys. Lett. 401 (2005) 459-464.
[35] A. Leonhardt, S. Hampel, C. Muller, I. Mönch, R. Koseva, M. Ritschel, D. Elefant, K. Biedermann, B. Büchner, ‘Synthesis, Properties, and Applications of Ferromagnetic-Filled Carbon Nanotubes’, Chem. Vap. Deposition 12 (2006) 380-387.
[36] R. Prakash, A.K. Mishra, A. Roth, C. Kübel, T. Scherer, M. Ghafari, H. Hahn, M. Fichtner, ‘A Ferrocene-Based Carbon–Iron Lithium Fluoride Nanocomposite as a Stable Electrode Material an Lithium Batteries’, J. Mater. Chem. 20 (2010) 1871-1876.
[37] A. Bhattacharjee, A. Rooj, M. Roy, J. Kusz, P. Gütlich, ‘Solventless Synthesis of Hematite Nanoparticles using Ferrocene’, J. Mater. Sci. 48 (2013) 2961-2968.
[38] A. Rooj, M. Roy, J. Kusz, A. Bhattacharjee, ‘A Solventless Method to Prepare Hematite using Thermal Decomposition of Ferrocene’, Int. J. Exp. Spect. Tech. 1 (2016) 3-10.
[39] S.F. Soares, T.R. Simoes, T. Trindade, A.L. Daniel-da-Silva, ‘Highly Efficient Removal of Dye from Water Using Magnetic Carrageenan/Silica Hybrid Nano-adsorbents’, Water Air & Soil Pollut. 228 (2017) 87-98.
[40] M. Ghosh, S. Ghosh, M. Seibt, ‘Designing Deoxidation Inhibiting Encapsulation of Metal Oxide Nanostructures for Fluidic and Biological Application’, Apl. Surf. Sc. 390 (2016) 924-928.
[41] A. Makridis, I. Chatzitheodorou, K. Topouridou, M.P. Yavropoulou, M. Angelakeris, C. Dendrinou-Samara, ‘A Facile Microwave Synthetic Route for Ferrite Nanoparticles with Direct Impact in Magnetic Particle Hyperthermia’, Mater. Sci. Eng. C- Mater. Bio. Appl. 63 (2016) 663-670.
[42] M.P. Leal, S. Rivera-Fernandez, J.M. Franco, D. Pozo, J.M. de la Fuente, M.L. Garcia-Martin, ‘Long-Circulating Pegylated Manganese Ferrite Nanoparticles for MRI-Based Molecular Imaging’, Nanoscale 7 (2015) 2050-2059.