Quantum Dots, Synthesis Properties and Biology Application

$20.00

Quantum Dots, Synthesis Properties and Biology Application

Nimai Mishra

Quantum dots (QDs) are semiconductor nanocrystals which show extraordinary optical and electrical properties due to quantum confined nature of their energy levels. For a given material, the variation in optical properties of the QD stem from its size. Typically, the size ranges from a few nanometers to tens of nanometers. Such small dimensions are usually smaller than the de- Broglie wavelength of thermal electrons. Due to quantum confinement effect these particles exhibit unique optical properties, such as narrow FWHM, high quantum yield, size dependent emission etc. which make them useful for the several biological applications such in bio-imaging and diagnosis. In this chapter, we describe the synthesis of different QDs, their functionalization, processing and their combination with suitable materials to match the needs of biological applications.

Keywords
Semiconductor Nanocrystals, Quantum Dots, Synthesis, Optical Properties, Bio-imaging

Published online 7/1/2018, 31 pages

DOI: http://dx.doi.org/10.21741/9781945291739-2

Part of the book on Nanomaterials in Bio-Medical Applications

References
[1] S. Link, M.A. El-Sayed, Spectral Properties and Relaxation Dynamics of Surface Plasmon Electronic Oscillations in Gold and Silver Nanodots and Nanorods, J. Phys. Chem. B 40 (1999) 8410-8426. https://doi.org/10.1021/jp9917648
[2] A.L. Efros, Interband Absorption of Light in a Semiconductor Sphere., SoV. Phys. Semicond. 16(1982) 772-775.
[3] L. Brus, Electronic wave functions in semiconductor clusters: experiment and theory., J. Phys. Chem. 90 (1986) 2555-2560. https://doi.org/10.1021/j100403a003
[4] J.M. Bruchez, M. Moronne, P. Gin, S.Weiss, A.P. Alivisatos, Semiconductor Nanocrystals as Fluorescent Biological Labels, Science 281(1998) 2013-2016. https://doi.org/10.1126/science.281.5385.2013
[5] V.I. Klimov, A.A.Mikhailovsky, S. Xu, A. Malko, et al.,Optical gain and stimulated emission in nanocrystal quantum dots., Science 290 (2000) 314-317. https://doi.org/10.1126/science.290.5490.314
[6] V.I. Klimov, Mechanisms for Photogeneration and Recombination of Multiexcitons in Semiconductor Nanocrystals:  Implications for Lasing and Solar Energy Conversion. J. Phys. Chem. B. 110(2006) 16827-16845. https://doi.org/10.1021/jp0615959
[7] V.I. Klimov, S.A. Ivanov, J. Nanda, et al. Single-exciton optical gain in semiconductor nanocrystals., Nature 447 (2007) 441-446. https://doi.org/10.1038/nature05839
[8] S. Coe, W. Woo, M.G. Bawendi, V. Bulovic, Electroluminescence from single monolayers of nanocrystals in molecular organic devices., Nature 420(2002), 800-803. https://doi.org/10.1038/nature01217
[9] I. Gur, N.A. Fromer, M.L. Geier, A.P. Alivisatos, Air-Stable All-Inorganic Nanocrystal Solar Cells Processed from Solution, Science 310 (2005), 462-465. https://doi.org/10.1126/science.1117908
[10] P.K. Jain, X. Huang, I.H. El-Sayed, M.A. El-Sayad, Review of Some Interesting Surface Plasmon Resonance-enhanced Properties of Noble Metal Nanoparticles and Their Applications to Biosystems., Plasmonics 2 (2007) 107-118. https://doi.org/10.1007/s11468-007-9031-1
[11] A.P. Alivisatos,; W.W. Gu, C. Larabell, Quantum dots as cellular probes, Annu. ReV. Biomed. Eng. 7(2005) 55-76. https://doi.org/10.1146/annurev.bioeng.7.060804.100432
[12] R. Hergt, S. Dutz, R. Muller, M. Zeisberger, Magnetic particle hyperthermia: nanoparticle magnetism and materials development for cancer therapy. J. Phys.: Condens. Matter 18(2006) S2919-S2934. https://doi.org/10.1088/0953-8984/18/38/S26
[13] Y. Jun, W. Seo, J. W. Cheon, A. Nanoscaling Laws of Magnetic Nanoparticles and Their Applicabilities in Biomedical Sciences. Acc. Chem. Res. 41(2008), 179-189. https://doi.org/10.1021/ar700121f
[14] S. Laurent, D. Forge, M. Port, Magnetic Iron Oxide Nanoparticles: Synthesis, Stabilization, Vectorization, Physicochemical Characterizations, and Biological Applications., Chem. ReV. 108(2008) 2064-2110. https://doi.org/10.1021/cr068445e
[15] N. Moumen, M.P. Pileni, New Syntheses of Cobalt Ferrite Particles in the Range 2−5 nm:  Comparison of the Magnetic Properties of the Nanosized Particles in Dispersed Fluid or in Powder Form., Chem. Mater. 8(1996) 1128-1134. https://doi.org/10.1021/cm950556z
[16] A.T. Ngo, M.P. Pileni, Nanoparticles of Cobalt Ferrite: Influence of the Applied Field on the Organization of the Nanocrystals on a Substrate and on Their Magnetic Properties. Adv. Mater. 12 (2000), 276-279. https://doi.org/10.1002/(SICI)1521-4095(200002)12:4<276::AID-ADMA276>3.0.CO;2-D
[17] P.A. Taleb, M.P. Pileni, Self-Organization of Magnetic Nanosized Cobalt Particles. Adv. Mater. 10(1998) 259-261. https://doi.org/10.1002/(SICI)1521-4095(199802)10:3<259::AID-ADMA259>3.0.CO;2-R
[18] T.J. Trentler, T.E. Denler, J.F. Bertone, et.al. Synthesis of TiO2 Nanocrystals by Nonhydrolytic Solution-Based Reactions., J. Am. Chem. Soc. 121 (1999) 1613-1614. https://doi.org/10.1021/ja983361b
[19] J. Joo, T. Yu, Y.W. Kim, et al. Multigram Scale Synthesis and Characterization of Monodisperse Tetragonal Zirconia Nanocrystals. J. Am. Chem. Soc. 125(2003) 6553-6557. https://doi.org/10.1021/ja034258b
[20] C.B. Murray, D.J. Norris, M.G. Bawendi, Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites., J. Am. Chem. Soc. 115 (1993) 8706-8715. https://doi.org/10.1021/ja00072a025
[21] Y. Yin, A.P. Alivisatos, Colloidal nanocrystal synthesis and the organic–inorganic interface., Nature. 437(2005) 664-670. https://doi.org/10.1038/nature04165
[22] D.V. Talapin, A.L. Rogach, A. Kornowski, et al, Highly Luminescent Monodisperse CdSe and CdSe/ZnS Nanocrystals Synthesized in a Hexadecylamine−Trioctylphosphine Oxide−Trioctylphospine Mixture., Nano Lett. 1 (2001) 207-211. https://doi.org/10.1021/nl0155126
[23] B. Blackman, D.M. Battaglia, T.D.Mishima, et al., Control of the Morphology of Complex Semiconductor Nanocrystals with a Type II Heterojunction, Dots vs Peanuts, by Thermal Cycling., Chem. Mater.19 (2007) 3815-3821. https://doi.org/10.1021/cm0704682
[24] Z.A. Peng, X. Peng, Nearly Monodisperse and Shape-Controlled CdSe Nanocrystals via Alternative Routes:  Nucleation and Growth. J. Am. Chem. Soc. 124(2002) 3343-3353. https://doi.org/10.1021/ja0173167
[25] M.L. Steigerwald, A.P. Livisatos, J.M.Gibson, et al. Surface derivatization and isolation of semiconductor cluster molecules. J. Am. Chem. Soc. 110 (1988) 3046-3050. https://doi.org/10.1021/ja00218a008
[26] G. Morello, Giorgi M. De, S, Kudera, et al. Temperature and Size Dependence of Nonradiative Relaxation and Exciton−Phonon Coupling in Colloidal CdTe Quantum Dots. J. Phys. Chem. C. 111 (2007) 5846-5849. https://doi.org/10.1021/jp068307t
[27] K.-T. Yong, Y. Sahoo, M.T. Swihart, et al. Shape Control of CdS Nanocrystals in One-Pot Synthesis. J. Phys. Chem. C 111 (2007) 2447-2458. https://doi.org/10.1021/jp066392z
[28] O.I. Micic, C.J. Curtis, K.M. Jones, et al., Synthesis and Characterization of InP Quantum Dots. J. Phys. Chem. 98(1994) 4966-4969. https://doi.org/10.1021/j100070a004
[29] S.P. Ahrenkiel, O.I. Mićić, A. Miedaner, C.J. Curtis, J.M. Nedeljković, and A.J. Nozik. Synthesis and Characterization of Colloidal InP Quantum Rods., Nano Letters, 3(2003) 833–837. https://doi.org/10.1021/nl034152e
[30] D.V. Talapin, A.L. Rogach, E.V.Shevchenko, et al. Dynamic Distribution of Growth Rates within the Ensembles of Colloidal II−VI and III−V Semiconductor Nanocrystals as a Factor Governing Their Photoluminescence Efficiency., J. Am. Chem. Soc. 124(2002) 5782-5790. https://doi.org/10.1021/ja0123599
[31] D. Battaglia, X. Peng, Formation of High Quality InP and InAs Nanocrystals in a Noncoordinating Solvent., Nano Lett. 2(2002) 1027-1030. https://doi.org/10.1021/nl025687v
[32] M.A. Hines, G.D. Scholes, Colloidal PbS Nanocrystals with Size-Tunable Near-Infrared Emission: Observation of Post-Synthesis Self-Narrowing of the Particle Size Distribution., Advanced Materials. 15 (2003) 1844-1849. https://doi.org/10.1002/adma.200305395
[33] D.V. Talapin, C.B. Murray, PbSe Nanocrystal Solids for n- and p-Channel Thin Film Field-Effect Transistors., Science 310(2005) 86-89. https://doi.org/10.1126/science.1116703
[34] J.J. Urban, D.V.Talapin, E.V.Shevchenko, et al. Self-Assembly of PbTe Quantum Dots into Nanocrystal Superlattices and Glassy Films, J. Am.Chem. Soc. 128 (2006) 3248-3255. https://doi.org/10.1021/ja058269b
[35] D.V. Talapin, J.S. Lee, M.V. Kovalenko, E.V. Shevchenko, Prospects of Colloidal Nanocrystals for Electronic and Optoelectronic Applications., Chem. Rev. 110 (2010) 389–458. https://doi.org/10.1021/cr900137k
[36] M.A. Hines, P. Guyot-Sionnest, Synthesis and Characterization of Strongly Luminescing ZnS-Capped CdSe Nanocrystals., J. Phys Chem, 100 (1996) 468-471. https://doi.org/10.1021/jp9530562
[37] B. Andrew Greytak, M. Allen Peter, Liu Wenhao, et al., Alternating layer addition approach to CdSe/CdS core/shell quantum dots with near-unity quantum yield and high on-time fractions., Chem. Sci., 3(2012) 2028–2034. https://doi.org/10.1039/c2sc00561a
[38] N.R. Jana, X. Peng, Single-Phase and Gram-Scale Routes toward Nearly Monodisperse Au and Other Noble Metal Nanocrystals., J. Am. Chem. Soc. 125 (2003) 14280-14281. https://doi.org/10.1021/ja038219b
[39] M. Brust, M. Walker, D. Bethell, et al., Synthesis of thiol-derivatised gold nanoparticles in a two-phase Liquid–Liquid system., Chem. Commun. 7(1994) 801-802. https://doi.org/10.1039/C39940000801
[40] S.E. Skrabalak, B.J. Wiley, M.H. Kim, et al., On the Polyol Synthesis of Silver Nanostructures: Glycolaldehyde as a Reducing Agent., Nano Lett. 8(2008) 2077-2081. https://doi.org/10.1021/nl800910d
[41] B. Wiley, S.-H. Im, Z.-Y Li, J.M. McLellan, A. Siekkinen, Y.J. Xia, Maneuvering the surface plasmon resonance of silver nanostructures through shape-controlled synthesis., Phys. Chem. B 110(2006) 15666-15675. https://doi.org/10.1021/jp0608628
[42] Y. Borodko, S.M. Humphrey, T. Don Tilley, H. Frei, G.A. Somorjai, Charge-Transfer Interaction of Poly(vinylpyrrolidone) with Platinum and Rhodium Nanoparticles., J. Phys. Chem. C 111(2007) 6288-6295. https://doi.org/10.1021/jp068742n
[43] C. Wang, H. Daimon, T. Onodera, T. Koda, S. Sun, A general approach to the size- and shape-controlled synthesis of platinum nanoparticles and their catalytic reduction of oxygen., Angew. Chem., Int. Ed. 47(2008) 3588-3591. https://doi.org/10.1002/anie.200800073
[44] S.U. Son, Y. Jang, K.Y.Yoon, E. Kang, T. Facile Hyeon, Synthesis of Various Phosphine-Stabilized Monodisperse Palladium Nanoparticles through the Understanding of Coordination Chemistry of the Nanoparticles., Nano Lett. 4(2004), 1147-1151. https://doi.org/10.1021/nl049519+
[45] Y. Sun, B. Wiley, Z.-Y. Li, Y. Xia, Synthesis and Optical Properties of Nanorattles and Multiple-Walled Nanoshells/Nanotubes Made of Metal Alloys., J. Am. Chem. Soc. 126(2004) 9399-9406. https://doi.org/10.1021/ja048789r
[46] Y. Yin, A.P. Alivisatos, Colloidal nanocrystal synthesis and the organic–inorganic interface., Nature 437(2005) 664-670. https://doi.org/10.1038/nature04165
[47] C.D.M. Donega, Synthesis and properties of colloidal heteronanocrystals., Chem. Soc. Rev., 40(2011) 1512–1546. https://doi.org/10.1039/C0CS00055H
[48] Y. Wang, N. Herron, Nanometer-sized semiconductor clusters: materials synthesis, quantum size effects, and photophysical properties., J. Phys. Chem. 95(1991) 525–532. https://doi.org/10.1021/j100155a009
[49] J. Bang, H. Yang, P.H. Holloway, Enhanced and stable green emission of ZnO nanoparticles by surface segregation of Mg., Nanotechnology 17(2006) 973–978. https://doi.org/10.1088/0957-4484/17/4/022
[50] E. Kucur, W. Bucking, R. Giernoth, et al., Determination of Defect States in Semiconductor Nanocrystals by Cyclic Voltammetry., Phys. Chem. B 109(2005) 20355–20360. https://doi.org/10.1021/jp053891b
[51] A.M. Smith, S. Nie, Semiconductor Nanocrystals: Structure, Properties, and Band Gap Engineering., Acc. Chem. Res.43(2010) 190–200. https://doi.org/10.1021/ar9001069
[52] U.E.H. Laheld, F.B. Pedersen, P.C. Hemmer, Excitons in type-II quantum dots: Finite offsets, Phys. Rev. B 52(1995) 2697-2703. https://doi.org/10.1103/PhysRevB.52.2697
[53] M.V. Kovalenko, M. Scheele, D.V0. Talapin, Colloidal nanocrystals with molecular metal chalcogenide surface ligands, Science 324 (2009) 1417-1420. https://doi.org/10.1126/science.1170524
[54] A.L. Efros, M. Random Rosen, Telegraph Signal in the Photoluminescence Intensity of a Single Quantum Dot., Phys. Rev. Lett. 78 (1997) 1110–1113. https://doi.org/10.1103/PhysRevLett.78.1110
[55] E.W. Williams, R. Hall, Pergomon Press: New York, NY, USA, 1977; p 237.
[56] M. Nirmal, B.O. Dabbousi, M.G. Bawendi, et al., Fluorescence intermittency in single cadmium selenide nanocrystals., Nature 383(1996) 802−804. https://doi.org/10.1038/383802a0
[57] Y. Chen, J. Vela, H. Htoon, et al., “Giant” multishell CdSe nanocrystal quantum dots with suppressed blinking., J. Am. Chem. Soc. 130(2008) 5026-5027. https://doi.org/10.1021/ja711379k
[58] C. Galland, Y. Ghosh, A. Steinbrück, M. Sykora, et al., Two types of luminescence blinking revealed by spectroelectrochemistry of single quantum dots., Nature 479(2011) 203-207. https://doi.org/10.1038/nature10569
[59] A.L. Efros, M. Rosen, Random Telegraph Signal in the Photoluminescence Intensity of a Single Quantum Dot., Phys. Rev. Lett. 78 (1997) 1110 -1113. https://doi.org/10.1103/PhysRevLett.78.1110
[60] C. Galland, Y. Ghosh, A. Steinbrück, J.A. Hollingsworth, et al., Lifetime blinking in nonblinking nanocrystal quantum dots., Nature Commun. 3 (2012) 908 (7pages).
[61] A.K. Bhattacharjee, Optical properties of paramagnetic ion-doped semiconductor nanocrystals., Phys. Rev. B: Condens. Matter Mater.Phys., 68( 2003) 045303 (6 pages).
[62] S.L. Cumberland, K.M. Hanif, A. Javier, et al., Inorganic Clusters as Single-Source Precursors for Preparation of CdSe, ZnSe, and CdSe/ZnS Nanomaterials., Chem. Mater.14(2002) 1576–1584. https://doi.org/10.1021/cm010709k
[63] S.C. Erwin, L.J. Zu, M.I. Ha, et al., Doping semiconductor nanocrystals., Nature 436 (2005) 91–94. https://doi.org/10.1038/nature03832
[64] R.N. Bhargava, D. Gallagher, X. Hong, A. Nurmikko, Optical properties of manganese-doped nanocrystals of ZnS., Phys. Rev.Lett. 72(1994) 416–419. https://doi.org/10.1103/PhysRevLett.72.416
[65] A. Nag, S. Sapra, C. Nagamani, et al., Study of Mn2+ Doping in CdS Nanocrystals., Chem. Mater., 19(2007) 3252–3259. https://doi.org/10.1021/cm0702767
[66] J.W. Stouwdam, R.A.J. Janssen, Electroluminescent Cu-doped CdS Quantum Dots., Adv. Mater., 21 (2009) 2916–2920. https://doi.org/10.1002/adma.200803223
[67] F. Zhang, X.W. He, W.Y. Li, Y.K. Zhang, One-pot aqueous synthesis of composition-tunable near-infrared emitting Cu-doped CdS quantum dots as fluorescence imaging probes in living cells., J. Mater.Chem., 22 (2012) 22250–22257. https://doi.org/10.1039/c2jm33560c
[68] F.C. Mikulec, M. Kuno, M. Bennati, D.A. Hall, R.G. Griffin, G.M. Bawendi, Organometallic Synthesis and Spectroscopic Characterization of Manganese-Doped CdSe Nanocrystals. J. Am. Chem. Soc., 122 (2000) 2532–2540. https://doi.org/10.1021/ja991249n
[69] B.B. Srivastava, S. Jana, N. Pradhan, Doping Cu in Semiconductor Nanocrystals: Some Old and Some New Physical Insights., J. Am. Chem. Soc., 133(2011) 1007–1015. https://doi.org/10.1021/ja1089809
[70] S. Jana, B.B. Srivastava, R. Bose, N. Pradhan,. Multifunctional Doped Semiconductor Nanocrystals. J. Phys. Chem. Lett., 3 (2012) 2535–2540. https://doi.org/10.1021/jz3010877
[71] R.G. Xie, X.G. Peng, Synthesis of Cu-Doped InP Nanocrystals (d-dots) with ZnSe Diffusion Barrier as Efficient and Color-Tunable NIR Emitters., J. Am. Chem. Soc., 131(2009)10645–10651. https://doi.org/10.1021/ja903558r
[72] J.R. Lakowicz, I. Gryczynski, Z. Gryczynski, C.J. Murphy, Luminescence Spectral Properties of CdS Nanoparticles., J. Phys. Chem. B, 103 (1999) 7613–7620. https://doi.org/10.1021/jp991469n
[73] T. Torimoto, M. Yamashita, S. Kuwabata, et al., Fabrication of CdS Nanoparticle Chains along DNA Double Strands., J. Phys. Chem. B 103(1999) 8799–8803. https://doi.org/10.1021/jp991781x
[74] J.R. Lakowicz, I. Gryczynski, Z. Gryczynski, et al., Temperature- and salt-dependent binding of long DNA to protein-sized quantum dots: thermodynamics of “inorganic protein”-DNA interactions., Anal. Biochem. 280(2000) 128–136. https://doi.org/10.1006/abio.2000.4495
[75] S.R. Bigham, J.L. Coffer, Thermochemical Passivation of DNA-Stabilized Q-Cadmium Sulfide Nanoparticles., J. Cluster Sci. 11 (2000) 359–372. https://doi.org/10.1023/A:1009049823345
[76] X. Li, J.L.Coffer, Effect of Pressure on the Photoluminescence of Polynucleotide-Stabilized Cadmium Sulfide Nanocrystals., Chem. Mater, 11(1999) 2326–30. https://doi.org/10.1021/cm980485e
[77] I. Willner, F. Patolsky, J. Wasserman, Nanoparticles, Proteins, and Nucleic Acids: Biotechnology Meets Materials Science., Angew. Chem. Int. Ed. Engl. 40(2000) 1861–1864. https://doi.org/10.1002/1521-3773(20010518)40:10<1861::AID-ANIE1861>3.0.CO;2-V
[78] I. Sondi, O. Siiman, S. Koester, E. Matijevic, Preparation of Aminodextran−CdS Nanoparticle Complexes and Biologically Active Antibody−Aminodextran−CdS Nanoparticle Conjugates., Langmuir 16(2000) 3107–3118. https://doi.org/10.1021/la991109r
[79] H.M. Chen, X.F. Huang, L. Xu, J. Xu, K.J. Chen, D. Feng, Self-assembly and photoluminescence of CdS-mercaptoacetic clusters with internal structures., Superlatt.Microstruct. 27 (2000) 1–5. https://doi.org/10.1006/spmi.1999.0794
[80] A.L. Rogach, L. Katsikas, A. Kornowski, D. Su, A. Eychmueller, H. Weller, Synthesis and Characterization of a Size Series of Extremely Small Thiol-Stabilized CdSe Nanocrystals., J. Phys. Chem. B, 103(1999) 3065–3069. https://doi.org/10.1021/jp984833b
[81] N.N. Mamedova, N.A. Kotov, Albumin−CdTe Nanoparticle Bioconjugates:  Preparation, Structure, and Interunit Energy Transfer with Antenna Effect., Nano Lett. 1(2001) 281–286. https://doi.org/10.1021/nl015519n
[82] F. Pinaud, D. King, H.P. Moore, and S. Weiss, Bioactivation and cell targeting of semiconductor CdSe/ZnS nanocrystals with phytochelatin-related peptides., J. Am. Chem. Soc. 126 (2004), , 6115–6123. https://doi.org/10.1021/ja031691c
[83] W. Chan and M. Nie, Quantum dot bioconjugates for ultrasensitive nonisotopic detection., Science 281(1998) 2016–2018. https://doi.org/10.1126/science.281.5385.2016
[84] T. Pellegrino, L. Manna, S.T. Kudera Liedl., et al., Hydrophobic Nanocrystals Coated with an Amphiphilic Polymer Shell:  A General Route to Water Soluble Nanocrystals., Nano Letters 4(2004) 703–707. https://doi.org/10.1021/nl035172j
[85] C.A.J. Lin, R.A. Sperling, J.K. Li, et al., Design of an Amphiphilic Polymer for Nanoparticle Coating and Functionalization., Small 4 (2008) 334–341. https://doi.org/10.1002/smll.200700654
[86] G.P. Mitchell, C.A. Mirkin and R.L. Letsinger, Programmed Assembly of DNA Functionalized Quantum Dots., J. Am. Chem. Soc. 121(1999) 8122–8123. https://doi.org/10.1021/ja991662v
[87] C-.C. Chen, C-.P. Yet, H-.N. Wang and C-.Y.Chao, Water-Soluble, Isolable Gold Clusters Protected by Tiopronin and Coenzyme A Monolayers., Langmuir 15(1999) 6845–50.
[88] C.Y. Zhang, H. Ma, S.M. Nie, Y. Ding, L. Jin and D.Y.Chen, Quantum dot-labeled trichosanthin., Analyst 125(2000) 1029–1031. https://doi.org/10.1039/b002666m
[89] B. Sun, W. Xie, G. Yi, D. Chen, Y. Zhou and J. Cheng, Microminiaturized immunoassays using quantum dots as fluorescent label by laser confocal scanning fluorescence detection., J. Immunol. Methods 249(2001) 85–89. https://doi.org/10.1016/S0022-1759(00)00331-8
[90] D.M. Willard, L.L. Carillo, J. Jung and A.V. Orden, CdSe−ZnS Quantum Dots as Resonance Energy Transfer Donors in a Model Protein−Protein Binding Assay, Nano Lett. 1(2001) 469–474. https://doi.org/10.1021/nl015565n
[91] J. Aldana, Y.A. Wang and X. Peng, Photochemical Instability of CdSe Nanocrystals Coated by Hydrophilic Thiols., J. Am. Chem. Soc. 123(2001) 8844–8850. https://doi.org/10.1021/ja016424q
[92] D. Gerion, F. Pinaud, S.C. Williams, W.J. Parak, D. Zanchet, S Weiss and A.P. Alivisatos, Synthesis and Properties of Biocompatible Water-Soluble Silica-Coated CdSe/ZnS Semiconductor Quantum Dots., J. Phys. Chem. B. 105(2001) 8861–8871. https://doi.org/10.1021/jp0105488
[93] H. Mattoussi, J.M. Mauro, E.R. Goldman, G.P. Anderson, V.C. Sundar, F.V. Mikulec and M.G. Bawendi, Self-Assembly of CdSe−ZnS Quantum Dot Bioconjugates Using an Engineered Recombinant Protein., J. Am.Chem. Soc. 122 (2000) 12142–12150. https://doi.org/10.1021/ja002535y
[94] L. Guo, S. Yang, C. Yang, et al., Highly monodisperse polymer-capped ZnO nanoparticles: Preparation and optical properties., Appl. Phys. Lett. 76(2000) 2901–2903. https://doi.org/10.1063/1.126511
[95] L.M. Liz-Marz´an, M. Giersig and P. Mulvaney, Synthesis of Nanosized Gold−Silica Core−Shell Particles., Langmuir. 12 (1996) 4329–4335. https://doi.org/10.1021/la9601871
[96] P. Mulvaney, L.M. Liz-Marz´an, M. Giersig and T. Ung, Silica encapsulation of quantum dots and metal clusters., J. Mater. Chem. 10(2000) 1259–1270. https://doi.org/10.1039/b000136h
[97] W.J. Parak, D. Gerion, D. Zanchet, et al., Conjugation of DNA to Silanized Colloidal Semiconductor Nanocrystalline Quantum Dots. Chem. Mater. 14 (2002) 2113–2119. https://doi.org/10.1021/cm0107878
[98] A. Schroedter, H. Weller, Biofunctionalization of Silica-Coated CdTe and Gold Nanocrystals., J M. Nano Lett. 2(2002) 1363–1367. https://doi.org/10.1021/nl025779k
[99] W. Jiang, A. Singha., J.N. Zheng, et al., Optimizing the Synthesis of Red- to Near-IR-Emitting CdS-Capped CdTexSe1-x Alloyed Quantum Dots for Biomedical Imaging. Chemistry of Materials, 18 (2006) 4845–4854. https://doi.org/10.1021/cm061311x
[100] B.R. Hyun, H.Y. Chen, D.A. Rey, F.W. Wise, and C.A. Batt, Near-Infrared Fluorescence Imaging with Water-Soluble Lead Salt Quantum Dots. Journal of Physical Chemistry B, 111(2007) 5726–5730. https://doi.org/10.1021/jp068455j
[101] H. Li, W.Y. Shih, and W.H. Shih, Synthesis and Characterization of Aqueous Carboxyl-Capped CdS Quantum Dots for Bioapplications., Industrial and Engineering Chemistry Research, 46(2007) 2013–2019. https://doi.org/10.1021/ie060963s
[102] J.K. Jaiswal, H. Mattoussi, J.M. Mauro, and S.M. Simon, Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nature Biotechnology, 21(2002) 47–51. https://doi.org/10.1038/nbt767
[103] S.L. Gac, I. Vermes, and A.V.D. Berg, Quantum Dots Based Probes Conjugated to Annexin V for Photostable Apoptosis Detection and Imaging., Nano Letters, 6 (2006) 1863–1869. https://doi.org/10.1021/nl060694v
[104] A. Wolcott, D. Gerion, M. Visconte, et al., Adam. Silica-Coated CdTe Quantum Dots Functionalized with Thiols for Bioconjugation to IgG Proteins. Journal of Physical Chemistry B, 110 (2006) 5779–5789. https://doi.org/10.1021/jp057435z
[105] H.W. Duan and S.M. Nie, Cell-Penetrating Quantum Dots Based on Multivalent and Endosome-Disrupting Surface Coatings., J. Am. Chem. Soc., 129 (2007) 3333–3336. https://doi.org/10.1021/ja068158s
[106] F.Q. Chen and D. Gerion, Nano Letters, Fluorescent CdSe/ZnS Nanocrystal−Peptide Conjugates for Long-term, Nontoxic Imaging and Nuclear Targeting in Living Cells. 4(2004)1827–1832.
[107] I. Yildiz, B. McCaughan, S.F. Cruickshank, J.F. Callan, and F.M. Raymo, Biocompatible CdSe−ZnS Core−Shell Quantum Dots Coated with Hydrophilic Polythiols., Langmuir 25 (2009)7090–7096. https://doi.org/10.1021/la900148m
[108] N. Ma, J. Yang, K.M. Stewart, and S.O. Kelley, DNA-Passivated CdS Nanocrystals:  Luminescence, Bioimaging, and Toxicity Profiles. Langmuir, 23 (2007) 12783–12787. https://doi.org/10.1021/la7017727
[109] P. Liu, Q.S. Wang, and X. Li, Studies on CdSe/l-cysteine Quantum Dots Synthesized in Aqueous Solution for Biological Labeling. Journal of Physical Chemistry C, 113(2009) 7670–7676. https://doi.org/10.1021/jp901292q
[110] C.F. Wu, T. Schneider, M. Zeigler, et al., Bioconjugation of Ultrabright Semiconducting Polymer Dots for Specific Cellular Targeting., J. Am. Chem. Soc. 132(2010) 15410–15417. https://doi.org/10.1021/ja107196s
[111] P.M. Allen, W.H. Liu, V.P. Chauhan, et al., InAs(ZnCdS) Quantum Dots Optimized for Biological Imaging in the Near-Infrared., J. Am. Chem. Soc. 132 (2010) 470–471. https://doi.org/10.1021/ja908250r
[112] P. Sun, H.Y. Zhang, C. Liu, et al., Langmuir 26(2010) 1278–1284. https://doi.org/10.1021/la9024553
[113] Y.A. Cao, K. Yang, Z.G. Li, et al., Near-infrared quantum-dot-based non-invasive in vivo imaging of squamous cell carcinoma U14. Nanotechnology 21(2010) Article ID 475104. https://doi.org/10.1088/0957-4484/21/47/475104
[114] V. Bagalkot, L.F. Zhang, E. Levy-Nissenbaum, et al., Quantum Dot−Aptamer Conjugates for Synchronous Cancer Imaging, Therapy, and Sensing of Drug Delivery Based on Bi-Fluorescence Resonance Energy Transfer., Nano Letters, 7 (2007) 3065–3070. https://doi.org/10.1021/nl071546n
[115] F. Erogbogbo, K.T. Yong, I. Roy, G.X. Xu, P.N. Prasad, and M.T. Swihart, Biocompatible Luminescent Silicon Quantum Dots for Imaging of Cancer Cells. ACS Nano, 2 (2008) 873–878. https://doi.org/10.1021/nn700319z
[116] V. Biju, D. Muraleedharan, K.I. Nakayama, et al., Quantum dot-Insect Neuropeptide Conjugates for Fluorescence Imaging, Transfection, and Nucleus Targeting of Living Cells., Langmuir. 23 (2007) 10254–10261. https://doi.org/10.1021/la7012705
[117] H.S. Choi, W.H. Liu, F.B. Liu, et al., Design considerations for tumour-targeted nanoparticles. Nature Nanotechnology, 5(2010) 42–47. https://doi.org/10.1038/nnano.2009.314
[118] A. Papagiannaros, J. Upponi, W. Hartner, D. Mongayt, T. Levchenko, and V. Torchilin, Quantum dot loaded immunomicelles for tumor imaging, BMCMedical Imaging 10 (2010) article 22. https://doi.org/10.1186/1471-2342-10-22
[119] B. Dubertret, P. Skourides, D.J. Norris, V. Noireaux, A.H. Brivanlou, and A. Libchaber, In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science, 298(2002) 1759–1762. https://doi.org/10.1126/science.1077194
[120] B. Ballou., B.C. Lagerholm, L.A. Ernst, M.P. Bruchez, and A.S Waggoner, Noninvasive Imaging of Quantum Dots in Mice., Bioconjugate Chemistry 15(2004) 79–86. https://doi.org/10.1021/bc034153y
[121] T.J. Daou, L. Li, P. Reiss, V. Josserand, and I. Texier, Effect of Poly(ethylene glycol) Length on the in Vivo Behavior of Coated Quantum Dots., Langmuir 25 (2009) 3040–3044. https://doi.org/10.1021/la8035083
[122] A.M. Derfus, W.C.W. Chan, and S.N. Bhatia, Probing the Cytotoxicity of Semiconductor Quantum Dots., Nano Letters 4 (2004) 11–18. https://doi.org/10.1021/nl0347334
[123] R. Hardman, A Toxicologic Review of Quantum Dots: Toxicity Depends on Physicochemical and Environmental Factors., Environmental Health Perspectives 114 (2006) 165–172. https://doi.org/10.1289/ehp.8284
[124] G.N. Guo, W. Liu, J.G. Liang, et al., Preparation and characterization of novel CdSe quantum dots modified with poly (D, L-lactide) nanoparticles., Materials Letters, 60 (2006) 565–2568. https://doi.org/10.1016/j.matlet.2006.01.073
[125] J.H. Park, L. Gu, G. Von Maltzahn, E. Ruoslahti, S.N. Bhatia, and M.J. Sailor, Biodegradable luminescent porous silicon nanoparticles for in vivo applications., Nature Materials 8 (2009) 331–336. https://doi.org/10.1038/nmat2398
[126] Y. Pan, S. Neuss, A. Leifert, et al., Size-dependent cytotoxicity of gold nanoparticles., Small 3 (2007) 1941–1949. https://doi.org/10.1002/smll.200700378