Applications of Reverse Osmosis for the Removal of Organic Compounds from Wastewater: A state-of-the-art from Process Modelling to Simulation

$20.00

Description

Applications of Reverse Osmosis for the Removal of Organic Compounds from Wastewater: A state-of-the-art from Process Modelling to Simulation

I.M. Mujtaba, M.A. Al-Obaidi, C. Kara-Zaïtri

This chapter presents the state-of-the-art on distributed models and associated performances of the most recent wastewater treatment methods based on the reverse osmosis (RO) process for the removal of high toxicological organic compounds from wastewater. The chapter presents the key challenges in connection with the removal of such harmful compounds. It provides a comprehensive critique on various models taking into account the impact of variable operating conditions and membrane dimensions and configurations. Whilst the literature review readily shows major RO successes in this aspect of work, it nevertheless highlights the continuing challenge of completely removing N-nitrosodimethylamine-D6 (NDMA) from wastewater.

Keywords
Wastewater Treatment, Reverse Osmosis, Modelling, Simulation, Organic Compound Removal

Published online 5/1/2018, 58 pages

DOI: http://dx.doi.org/10.21741/9781945291715-2

Part of the book on Organic Pollutants in Wastewater II

References
[1] G. Wade Miller, Integrated concepts in water reuse: managing global water needs, Desalination 187 (2006) 65-75. https://doi.org/10.1016/j.desal.2005.04.068
[2] Henze, M.; Loosdrecht, M.C.M. van; Ekama, G.A.; Brdjanovic, D., 2008. Biological Wastewater Treatment – Principles, Modelling and Design. IWA Publishing. Retrieved from: http://app.knovel.com/hotlink/toc/id:kpBWTPMD04/biological-wastewater/biological-wastewater
[3] Jiménez B.; Asano T.; 2008. Water reuse, an international survey of current practice, issues and needs. London: IWA Publishing.
[4] G. Busca, S. Berardinelli, C. Resini, L. Arrighi, Technologies for the removal of phenol from fluid streams: A short review of recent developments, J. Hazard Mater. 160 (2008) 265-288. https://doi.org/10.1016/j.jhazmat.2008.03.045
[5] A.E. Mohammed, A. Jarullah, S. Gheni, I.M. Mujtaba, Optimal design and operation of an industrial three phase reactor for the oxidation of phenol, Comput. Chem. Eng. 94 (2016) 257-271. https://doi.org/10.1016/j.compchemeng.2016.07.018
[6] A.A. Gami, M.Y. Shukor, K. Abdul Khalil, F.A. Dahalan, A. Khalid, S.A. Ahmad, Phenol and its toxicity, J. Envir. Microb. Tox. 2 (2014) 11-24.
[7] EFSA, 2013. Scientific opinion on the toxicological evaluation of phenol. EFSA Journal, 11(4), 3189. Available at: http://www.efsa.europa.eu/en/efsajournal/doc/3189.pdf
[8] P.A. Mangrulkar, A.K. Bansiwal, S.S. Rayalu, Adsorption of phenol and chlorophenol on surface altered fly ash based molecular sieves, Chem Eng J. 138 (2008) 73-77. https://doi.org/10.1016/j.cej.2007.05.030
[9] G. Srinivasan, S. Sundaramoorthy, D.V.R. Murthy, Validation of an analytical model for spiral wound reverse osmosis membrane module using experimental data on the removal of dimethylphenol, Desalination 281 (2011) 199-208. https://doi.org/10.1016/j.desal.2011.07.053
[10] S. Sundaramoorthy, G. Srinivasan, D.V.R. Murthy, An analytical model for spiral wound reverse osmosis membrane modules: part I—model development and parameter estimation, Desalination, 280 (1–3) (2011) 403-411. https://doi.org/10.1016/j.desal.2011.03.047
[11] J.W.A. Charrois, J.M. Boyd, K. L. Froese, S.E. Hrudey, Occurrence of N-nitrosamines in Alberta public drinking-water distribution systems, J. Environ. Eng. Sci. 6 (2007) 103-114. https://doi.org/10.1139/s06-031
[12] US EPA, 2009. United States Environmental Protection Agency IRIS database. Available at: https://www.epa.gov/iris.
[13] C. Lee, W. Choi, Y.G. Kim, J. Yoon, UV photolytic mechanism of N-nitrosodimethylamine in water: Dual pathways to methylamine versus dimethylamine, Environ. Sci. Tech. 39 (2005) 2101-2106. https://doi.org/10.1021/es0488941
[14] E. Steinle-Darling, M. Zedda, M.H. Plumlee, H.F. Ridgway, M. Reinhard, Evaluating the impacts of membrane type, coating, fouling, chemical properties and water chemistry on reverse osmosis rejection of seven nitrosoalklyamines, including NDMA, Water Res. 41 (2007) 3959-3967. https://doi.org/10.1016/j.watres.2007.05.034
[15] T. Fujioka, L.D. Nghiem, S.J. Khan, J.A. McDonald, Y. Poussade, J.E. Drewes, Effects of feed solution characteristics on the rejection of N-nitrosamines by reverse osmosis membranes, J. Membr. Sci. 409 (2012) 66-74. https://doi.org/10.1016/j.memsci.2012.03.035
[16] Dochain D.; Vanrolleghem P.A., 2001. Dynamical Modelling and Estimation in Wastewater Treatment Processes. London: IWA Publishing, ProQuest Ebook Central.
[17] M.A. Al-Obaidi, C. Kara-Zaitri, I.M. Mujtaba, Scope and limitations of the irreversible thermodynamics and the solution diffusion models for the separation of binary and multi-component systems in reverse osmosis process, Comput. Chem. Eng. 100 (2017) 48-79. https://doi.org/10.1016/j.compchemeng.2017.02.001
[18] N. Bolong, A.F. Ismail, M.R. Salim, T. Matsuura, A review of the effects of emerging contaminants in wastewater and options for their removal, Desalination 239 (2009) 229-246. https://doi.org/10.1016/j.desal.2008.03.020
[19] M. Safaa, 2009. Catalytic Wet Air Oxidation of Phenolic Compounds in Wastewater in a Trickle Bed Reactor at High Pressure. MSc. Thesis. University of Tikrit, Iraq.
[20] M.H. Al-Dahhan, L. Faical, P. Milorad, A.L. Dudukovic, High pressure trickle bed reactors: a review, Ind. Eng. Chem. Res. 36 (1997) 3292-3314. https://doi.org/10.1021/ie9700829
[21] W. Qiang, H. Xijun, L. Po, J. Yue, X. Feng, H. Chen, S. Zhang, Modeling of a pilot-scale trickle bed reactor for the catalytic oxidation of phenol, Sep. Purif. Technol. 67 (2009) 158-165. https://doi.org/10.1016/j.seppur.2009.03.021
[22] K.M. Sassi, I.M. Mujtaba, Optimal design and operation of reverse osmosis desalination process with membrane fouling, Chem. Eng. J. 171 (2011) 582-593. https://doi.org/10.1016/j.cej.2011.04.034
[23] A. Reverberi, B. Fabiano, C. Cerrato, V. Dovì, Concentration polarization in reverse osmosis membranes: Effect of membrane splitting, Chem. Eng. Trans. 39 (2014) 763-768.
[24] F. Evangelista, An improved analytical method for the design of spiral-wound modules, Chem. Eng. J. 38 (1988) 33-40. https://doi.org/10.1016/0300-9467(88)80051-0
[25] L. Song, S. Hong, J.Y. Hu, S.L. Ong, W.J. Ng, Simulations of Full-Scale Reverse Osmosis Membrane Process, J. Environ. Eng. 128 (10) (2002) 960-966. https://doi.org/10.1061/(ASCE)0733-9372(2002)128:10(960)
[26] M.A. Al-Obaidi, C. Kara-Zaïtri, I.M. Mujtaba, Wastewater treatment by spiral wound reverse osmosis: Development and validation of a two dimensional process model, J. Cleaner Prod. 140 (2017) 1429-1443. https://doi.org/10.1016/j.jclepro.2016.10.008
[27] S. Lee, R.M. Lueptow, Rotating reverse osmosis: a dynamic model for flux and rejection, J. Membr. Sci. 192 (2001) 129-143. https://doi.org/10.1016/S0376-7388(01)00493-8
[28] N.B. Amar, N. Kechaou, J. Palmeri, A. Deratani, A. Sghaier, Comparison of tertiary treatment by nanofiltration and reverse osmosis for water reuse in denim textile industry, J. Hazard Mater. 170 (2009) 111-117. https://doi.org/10.1016/j.jhazmat.2009.04.130
[29] I. Koyuncu, M.T. Topacik, A. Ates, Application of low pressure nanofiltration membranes for the recovery and reuse of dairy industry effluents, Water Sci. Tech. 41 (2000) 213-221.
[30] S. Álrez, F.A. Riera, R. Álvarez, J. Coca, Concentration of apple juice by reverse osmosis at laboratory and pilot-plant scales, Ind. Eng. Chem. Res. 41 (2002) 6156-6164. https://doi.org/10.1021/ie020013g
[31] P. Bhattacharya, A. Roy, S. Sarkar, S. Ghosh, S. Majumdar, S. Chakraborty, S. Mandal, A. Mukhopadhyay, S. Bandyopadhyay, Combination technology of ceramic microfiltration and reverse osmosis for tannery wastewater recovery, Water Resour. Ind. 3 (2013) 48-62. https://doi.org/10.1016/j.wri.2013.09.002
[32] R.M. Mitra-Gholami, R.R. Kalantary, A. Sabzali, F. Gatei, Performance evaluation of reverse osmosis technology for selected antibiotics removal from synthetic pharmaceutical wastewater, Iran. J. Environ. Health Sci. Eng. 9 (2012) 19. https://doi.org/10.1186/1735-2746-9-19
[33] X. Chai, G. Chen, P.-L. Yue, Y. Mi, Pilot scale membrane separation of electroplating waste water by reverse osmosis, J. Membr. Sci. 123 (1997) 235-242. https://doi.org/10.1016/S0376-7388(96)00217-7
[34] A. Bódalo-Santoyo, J.L. Gómez-Carrasco, E. Gómez-Gómez, F. Máximo-Martin, A.M. Hidalgo-Montesinos, Application of reverse osmosis to reduce pollutants presents in industrial wastewater, Desalination 155 (2003) 101-108. https://doi.org/10.1016/S0011-9164(03)00287-X
[35] A. Bódalo-Santoyo, J.L. Gómez-Carrasco, E. Gómez- Gómez, G. León, M. Tejera, Sulfonated polyethersulfone membrane in the desalination of aqueous, Desalination 168 (2004) 277-282. https://doi.org/10.1016/j.desal.2004.07.009
[36] H. Abo-Qdais, H. Moussa, Removal of heavy metals from wastewater by membrane processes: a comparative study, Desalination 164 (2004) 105-110. https://doi.org/10.1016/S0011-9164(04)00169-9
[37] M. Mohsen-Nia, P. Montazeri, H. Modarress, Removal of Cu+2 and Ni+2 from wastewater with chelating agent and reverse osmosis processes, Desalination 217 (2007) 276-281. https://doi.org/10.1016/j.desal.2006.01.043
[38] J.L. Gómez, G. León, A.M. Hidalgo, M. Gómez, M.D. Murcia, G. Griñán, Application of reverse osmosis to remove aniline from wastewater, Desalination 245 (2009) 687-693. https://doi.org/10.1016/j.desal.2009.02.038
[39] H. Mohammadi, M. Cholami, M. Rahimi, Application and optimization in chromium-contaminated wastewater treatment of the reverse osmosis technology, Desal. Water Treat. 9 (2009) 229-233. https://doi.org/10.5004/dwt.2009.808
[40] C. Sagne, C. Fargues, R. Lewandowski, M.-L. Lameloise, M. Gavach, M. Decloux, A pilot scale study of reverse osmosis for the purification of condensate arising from distillery stillage concentration plant, Chemical Engineering and Processing: Process Intensification 49 (2010) 331-339. https://doi.org/10.1016/j.cep.2010.03.002
[41] S.S. Madaeni, S. Koocheki, Influence of di-hydrogen phosphate ion performance of polyamide reverse osmosis membrane for nitrate and nitrite removal. J. Porous Mater. 17 (2010) 163-168. https://doi.org/10.1007/s10934-009-9276-5
[42] D. Tabassi, A. Mnif, B. Hamrouni, Influence of operating conditions on the retention of phenol in water by reverse osmosis SG membrane characterized using Speigler-Kedem model, Desal. Water Treat. 52 (2014) 1792-1803. https://doi.org/10.1080/19443994.2013.807049
[43] F. Khazaali, A. Kargari, M. Rokhsaran, Application of low-pressure reverse osmosis for effective recovery of bisphenol A from aqueous wastes, Desal. Water Treat. 52 (2014) 7543-7551. https://doi.org/10.1080/19443994.2013.831795
[44] K. Thirugnanasambandham, V. Sivakumar, K. Loganathan, R. Jayakumar, K. Shine, Pilot scale evaluation of feasibility of reuse of wine industry wastewater using reverse osmosis system: modeling and optimization, Desal. Water Treat. 57 (2016) 1-11. https://doi.org/10.1080/19443994.2016.1154894
[45] M.A. Al-Obaidi, I.M. Mujtaba, Steady state and dynamic modeling of spiral wound wastewater reverse osmosis process, Comput. Chem. Eng. 90 (2016) 278-299. https://doi.org/10.1016/j.compchemeng.2016.04.001
[46] R. Rautenbach, W. Dahm, Design and optimization of spiral-wound and hollow fiber RO-modules, Desalination 65 (1987) 259-275. https://doi.org/10.1016/0011-9164(87)90138-X
[47] S. Avlonits, W.T. Hanbury, M.B. Boudinar, Spiral wound modules performance. An analytical solution – part I, Desalination 81 (1991) 191-208. https://doi.org/10.1016/0011-9164(91)85053-W
[48] M.B. Boudinar, W.T. Hanbury, S. Avlonits, Numerical simulation and optimisation of spiral-wound modules, Desalination 86 (1992) 273-290. https://doi.org/10.1016/0011-9164(92)80038-B
[49] K.S. Spiegler, O. Kedem, Thermodynamics of hyperfiltration (reverse osmosis): criteria for efficient membranes, Desalination 1 (1966) 311-326. https://doi.org/10.1016/S0011-9164(00)80018-1
[50] S. Senthilmurugan, A. Ahluwalia, S.K. Gupta, Modeling of a spiral-wound module and estimation of model parameters using numerical techniques, Desalination 173 (2005) 269-286. https://doi.org/10.1016/j.desal.2004.08.034
[51] P.P. Mane, P.K. Park, H. Hyung, J.C. Brown, J.H. Kim, Modeling boron rejection in pilot- and full-scale reverse osmosis desalination processes, J. Membr. Sci. 338 (2009) 119-127. https://doi.org/10.1016/j.memsci.2009.04.014
[52] V. Geraldes, N. Escórcio Pereira, M. Norberta de Pinho, Simulation and optimization of medium-sized seawater reverse osmosis processes with spiral wound modules, Ind. Eng. Chem. Res. 44 (2005) 1897-1905. https://doi.org/10.1021/ie049357s
[53] C. Sagne, C. Fargues, B. Broyart, M. Lameloise, M. Decloux, Modeling permeation of volatile organic molecules through reverse osmosis spiral wound membranes, J. Membr. Sci. 330 (2009) 40-50. https://doi.org/10.1016/j.memsci.2008.12.038
[54] S.A. Avlonits, M. Pappas, K. Moutesidis, A unified model for the detailed investigation of membrane modules and RO plants performance, Desalination 203 (2007) 218-228. https://doi.org/10.1016/j.desal.2006.04.009
[55] H. Oh, T. Hwang, S. Lrr, A simplified model of RO systems for seawater desalination, Desalination 238 (2009) 128-139. https://doi.org/10.1016/j.desal.2008.01.043
[56] T. Kaghazchi, M. Mehri, M. Takht Ravanchi, A. Kargari, A mathematical modeling of two industrial seawater desalination plants in the Persian Gulf region, Desalination 252 (2010) 135-142. https://doi.org/10.1016/j.desal.2009.10.012
[57] S. Sundaramoorthy, G. Srinivasan, D.V.R. Murthy, An analytical model for spiral wound reverse osmosis membrane modules: part II—experimental validation, Desalination 277 (1–3) (2011) 257-264. https://doi.org/10.1016/j.desal.2011.04.037
[58] T. Fujioka, S.J. Khan, J.A. Mcdonald, A. Roux, Y. Poussade, J.E. Drewes, L.D. Nghiem, Modelling the rejection of N-nitrosamines by a spiral-wound reverse osmosis system: Mathematical model development and validation, J. Membr. Sci. 454 (2014) 212-219. https://doi.org/10.1016/j.memsci.2013.12.008
[59] M.A. Al-Obaidi, C. Kara-Zaïtri, I.M. Mujtaba, Development and validation of N-nitrosamine rejection mathematical model using a spiral-wound reverse osmosis process, Chem. Eng. Trans. 52 (2016) 1129-1134.
[60] C. Koroneos, A. Dompros, G. Roumbas, Renewable energy driven desalination systems modelling, J. Cleaner Prod. 15 (2007) 449-464. https://doi.org/10.1016/j.jclepro.2005.07.017
[61] T. Fujioka, S.J. Khan, J.A. Mcdonald, A. Roux, Y. Poussade, J.E. Drewes, L.D. Nghiem, N-nitrosamine rejection by nanofiltration and reverse osmosis membranes: The importance of membrane characteristics, Desalination 316 (2013) 67–75. https://doi.org/10.1016/j.desal.2013.01.028
[62] M.H. Plumlee, M. Lo´pez-Mesas, A. Heidlberger, K.P. Ishida, M. Reinhard, N-nitrosodimethylamine (NDMA) removal by reverse osmosis and UV treatment and analysis via LC–MS/MS, Water Res. 42 (2008) 347-355. https://doi.org/10.1016/j.watres.2007.07.022
[63] M. Krauss, P. Longrée, E. Van Houtte, J. Cauwenberghs, J. Hollender, Assessing the fate of nitrosamine precursors in wastewater treatment by physicochemical fractionation, Environ. Sci. Technol. 44 (2010) 7871-7877. https://doi.org/10.1021/es101289z
[64] Z.V.P. Murthy, S.K. Gupta, Sodium cyanide separation and parameter estimation for reverse osmosis thin film composite polyamide membrane, J. Membr. Sci. 154 (1999) 89-103. https://doi.org/10.1016/S0376-7388(98)00280-4
[65] I.M. Mujtaba, The Role of PSE Community in Meeting Sustainable Freshwater Demand of Tomorrow’s World via Desalination, In Computer Aided Chemical Engineering- 31, I. A. Karimi and Rajagopalan Srinivasan (Editors) Vol 31 (2012) 91-98, Elsevier.