Influence of (Glycine/Nitrate) Ratio on Structural and the Magnetic Properties of Gd3Fe5O12



Influence of (Glycine/Nitrate) Ratio on Structural and the Magnetic Properties of Gd3Fe5O12

S.I. El-Dek, S.F. Mansour, N. Okasha, M.A. Ahmed

Gadolinium iron garnet (GdIG) Gd3Fe5O12 was prepared using the autocombustion method with glycine as fuel. The GdIG samples revealed single phase garnet with cubic symmetry. The effect of (glycine/ nitrate) ratio on the structural and magnetic properties of the investigated garnet is reported. The results of the study indicated that the lattice parameter decreased with a remarkable improvement of the densification with increasing (glycine/ nitrate) ratio.

GdIG Nanoparticles, Glycine/Nitrate Ratio, XRD, TEM, Magnetization

Published online 4/20/2018, 12 pages


Part of the book on Magnetic Oxides and Composites

[1] Li Guo,K. Huang,Y. Chen, G. Li, L.Yuan, W. Peng, H. Yuan, S.Feng, Mild hydrothermal synthesis and ferrimagnetism of Pr3Fe5O12 and Nd3Fe5O12 garnets, Journal of Solid State Chemistry, 184 (2011) 1048-1053.
[2] X. Guo, Y. Chen, G.Wang, Y. Zhang, J.Ge, X. Tang, Freddy Ponchel, Denis Rémiens, Xianlin Dong, Growth and characterization of yttrium iron garnet films on Si substrates by Chemical Solution Deposition (CSD) technique, Journal of Alloys and Compounds, 671, (2016) 234-237.
[3] O. Opuchovic, A. Beganskiene, A. Kareiva, Sol–gel derived Tb3Fe5O12 and Y3Fe5O12 garnets: Synthesis, phase purity, micro-structure and improved design of morphology, Journal of Alloys and Compounds, 647, (2015) 189-197.
[4] A. Z. Arsad, N.B. Ibrahim, The effect of Ce doping on the structure, surface morphology and magnetic properties of Dy doped-yttrium iron garnet films prepared by a sol–gel method, Journal of Magnetism and Magnetic Materials, 410 ( 2016) 128-136.
[5] S. Song, D. Sheptyakov, M. Alexander. Korsunsky, Hai M. Duong, Li Lu, High Li ion conductivity in a garnet-type solid electrolyte via unusual site occupation of the doping Ca ions, Materials & Design, 93 (2016) 232-237.
[6] G. F. Dionne, Molecular‐field coefficients of rare‐earth iron garnets, Journal of Applied Physics 47, (1976) 4220-4222.
[7] G. Winkler, Magnetic Garnets, Friedr. Vieweg & Sohn, Braunschweig, Ch. 2 (1981).
[8] A. H. Eschenfelder, Magnetic Bubble Technology, Springer, New York, (1981).
[9] T. Yamagishi, J. Awaka, Y. Kawashima, M. Uemura, S. Ebisu, S. Chikazawa,S. Nagata,Ferrimagnetic order in the mixed garnet (Y1− xGdx )3Fe5O12, Philosophical Magazine, 85 (2005) 1819-1833.
[10] M. Uemura, T. Yamagishi, S. Ebisu, S. Chikazawa, and S. Nagata, A double peak of the coercive force near the compensation temperature in the rare earth iron garnets, , Philosophical Magazine, 88 (2008) 209-228.
[11] R. J. Joseyphus, A. Narayanasamy, A. K. Nigam, and R. Krishnan , Effect of mechanical milling on the magnetic properties of garnets, Journal of Magnetism and Magnetic Materials, 296, (2006) 57-64.
[12] Ch. Liu and Z. John Zhang , Size-Dependent Superparamagnetic Properties of Mn Spinel Ferrite Nanoparticles Synthesized from Reverse Micelles, Chemistry of Materials, 13 (2001) 2092-2096.
[13] S. C. Zanatta, L. F. Co´tica, A. PaesanoJr., S. N. deMedeiros, J. B. M.daCunha, B. Hallouche, Mechanosynthesis of Gadolinium Iron Garnet, Journal of American of Ceramic Society, 88 (2005) 3316-3321.
[14] P.B.A.Fechine, F.M.M.Pereira, M.R.P.Santos, F.P.Filho, A.S.deMenezes, Oliveira, .C. Go´es, L.P.Cardoso, A.S.B.Sombra, Microstructure and magneto-dielectric properties of ferrimagnetic composite GdIGX:YIG1−X at radio and microwave frequencies, Journal of Physics and Chemistry of Solids, 70 (2009) 804-810.
[15] S. Geller, Magnetic Interactions and Distribution of Ions in the Garnets Journal of Applied Physics, 31 (1960) S30-S37.
[16] A. Paesano, S. C. Zanata, S. N. De Mediros, L. F. Cotica, and J. B. M. Da Cunha, Mechanosyn thesis of YIG and GdIG: A Structural and Mössbauer Study, Hyperfine Interactions, 161 (2005) 211-220.
[17] R. D. Purohit, A.Chesnaud, A. Lachgar, O. Joubert, M.T.Caldes, Y. Piffard, L.Brohan, Development of New Oxygen Ion Conductors Based on Nd4GeO8 and Nd3GaO6, Chemistry of Materials, 17 (2005) 4479-4485.
[18] R. D. Purohit, A. K. Tyagi, Auto-ignition synthesis of nanocrystalline BaTi4O9 powder, Journal of Materials Chemistry, 12 (2002) 312-316.
[19] S. Bhaduri, S.B. Bhaduri, E. Zhou, Auto ignition synthesis and consolidation of Al2O3–ZrO2 nano/nano composite powders, Journal of Materials Research, 13 (1998)156-165.
[20] J.Kingsley, K.Suresh, K.C.Patil, Combustion synthesis of fine-particle metal aluminates, Journal of Materials Science, 25(1990) 1305-1312.
[21] H. K. Varma, P. Mukundan, K. G. K. Warrier, A. D. Damodaran, Flash combustion synthesis of cerium oxide, Journal of Materials Science Letters, 9 (4) (1990) 377-379.
[22] B. D. Cullity, S. R. Stock, Elements of X- ray Diffraction, 3rd ed., Prentice- Hall, Englewood Cliffs, NJ, (2001).
[23] A. Mali and A. Ataie, Influence of the metal nitrates to citric acid molar ratio on the combustion process and phase constitution of barium hexaferrite particles prepared by sol–gel combustion method, Ceramics International, 30 (2004) 1979-1983.
[24] P. A. Lessiny, Mixed-cation oxide powders via polymeric precursors, Ceramic Bulletine, 68(5)(1989) 1002-1007.
[25] X.Deng, Ch.Dong, EPCryst: a computer program for solving crystal structures from powder diffraction data, Journal of Applied Crystallography, 44 (2011) 230-237.
[26] M. A. Ahmed, Samiha T. Bishay and S. I. El-Dek, Conduction mechanism and magnetic behavior of dysprosium strontium iron garnet (DySrIG) nanocrystals, Materials Chemistry and Physics, 126 (2011)780-785.
[27] M. A. Ahmed, Samiha T.Bishay, S.I.El-Dek, S.S.Solyman, Memory effect of nanoparticles Dy2.8Sr0.2Fe5O12 (DySrIG), Smart materials and structure, 21 (2012) 045010-045015.