Use of Agricultural Solid Wastes as Adsorbents


Use of Agricultural Solid Wastes as Adsorbents

S. Naga, A. Bhardwaja, P. Pandeya, M. Arorab, J.N. Babu

Biosorption through agricultural lignocellulosic wastes and by-products has been identified as a viable substitute to current technologies applied to remove toxic metal ion and organic pollutants from water and wastewater. The present study emphasizes the use of agricultural and agro-industries based residues as low-cost biosorbents. The study aims to revisit the status of biosorption and various recent advances made in this arena. Biomasses are the main focuse of this study which requires substantial management. Further, this is supplemented with the physicochemical processing of such biomasses and their application in adsorption. The surge in biomass to energy applications in recent years has resulted in charred biomass production as a residual. These biochars have been used as adsorbents. The biosorbents have been divided into the following three groups: (i) raw biomass, (ii) processed biomass and (iii) charred biomass. The affinity of sorbents in the removal of organic and inorganic pollutants and their applications on water and wastewater have also been studied.

Agricultural Waste, Heavy Metals, Organic Contaminants, Biomass, Biochar

Published online 4/1/2018, 35 pages


Part of Organic Pollutants in Wastewater I

[1] SOIA, (2016), 2015-16.pdf.
[2] R. Singh, J.N. Babu, R. Kumar, P. Srivastava, P. Singh, A.S. Raghubanshi, Multifaceted application of crop residue biochar as a tool for sustainable agriculture: an ecological perspective, Ecol. Eng. 77 (2015) 324-347.
[3] P.J. Crutzen, M.O. Andreae, Biomass burning in the tropics: Impact on atmospheric chemistry and biogeochemical cycles, Science. 250 (1990) 1669-1679.
[4] A.K. Jain, Z. Tao, X. Yang, C. Gillespie, Estimates of global biomass burning emissions for reactive greenhouse gases (CO, NMHCs, and NOx) and CO2, J. Geophys. Res-Atmos. 111 (2006) 1-14.
[5] T.C. Thakur, A. Kumar, Machinery for zero-till surface managed crop residue systems progress and prospects, Conserv. Agri. 1 (2005) 33-42.
[6] J. Rass‐Hansen, H. Falsig, B. Jørgensen, C.H. Christensen, Bioethanol: fuel or feedstock? J. Chem. Technol. Biotechnol. 82 (2007) 329-333.
[7] O. Erenstein, Cropping systems and crop residue management in the trans-gangetic plains: Issues and challenges for conservation agriculture from village surveys, Agric. Syst. 104 (2011) 54-62.
[8] R. Singh, P. Srivastava, S. Upadhyay, P. Singh, A.S. Raghubanshi, J.N. Babu, Integrating biochar as conservation agriculture tool under climate change mitigation scenario, In Proceedings of National Conference on Climate Change: Impacts, Adaptation, Mitigation Scenario and Future Challenges in Indian Perspective, 2015.
[9] O.S. Lawal, O.S. Ayanda, O.O. Rabiu, K.O. Adebowale, Application of black walnut (Juglan nigra) husk for the removal of lead (II) ion from aqueous solution, Water Sci. Technol. 75 (2017) 2454-2464.
[10] N. Tahir, H.N. Bhatti, M. Iqbal, S. Noreen, Biopolymers composites with peanut hull waste biomass and application for crystal violet adsorption, Int. J. Biol. Macromol. 94 (2017) 210-220.
[11] M. Essandoh, D. Wolgemuth, C.U. Pittman, D. Mohan, T. Mlsna, Phenoxy herbicide removal from aqueous solutions using fast pyrolysis switchgrass biochar, Chemosphere 174 (2017) 49-57.
[12] R. Ayyappan, A.C. Sophia, K. Swaminathan, S. Sandhya, Removal of Pb(II) from aqueous solution using carbon derived from agricultural wastes, Process Biochem. 40 (2005) 1293-1299.
[13] R.K. Gautam, M.C. Chattopadhyaya, S.K. Sharma, Biosorption of heavy metals: recent trends and challenges, In Wastewater Reuse and Management, Springer, Netherlands, 2013, pp. 305-322.
[14] B. Alyüz, S. Veli, Kinetics and equilibrium studies for the removal of nickel and zinc from aqueous solutions by ion exchange resins, J. Hazard. Mater. 167 (2009) 482-488.
[15] A.S. Mohammed, A. Kapri, R. Goel, Heavy metal pollution: source, impact, and remedies, In Biomanagement of metal-contaminated soils, Springer, Netherlands, 2011, pp. 1-28.
[16] D.H. Nies, Microbial heavy-metal resistance, Appl. Microbiol. Biotechnol. 51 (1999) 730-750.
[17] M.R. Bruins, S. Kapil, F.W. Oehme, Microbial resistance to metals in the environment, Ecotoxicol. Environ. Saf. 45 (2000) 198-207.
[18] A. Abou-Shady, C. Peng, J. Bi, H. Xu, Recovery of Pb(II) and removal of NO3− from aqueous solutions using integrated electrodialysis, electrolysis, and adsorption process, Desalination 286 (2012) 304-315.
[19] V. Mavrov, T. Erwe, C. Blöcher, H. Chmiel, Study of new integrated processes combining adsorption, membrane separation and flotation for heavy metal removal from wastewater, Desalination 157 (2003) 97-104.
[20] H.F. Shaalan, M.H. Sorour, S.R. Tewfik, Simulation and optimization of a membrane system for chromium recovery from tanning wastes, Desalination 141 (2001) 315-324.
[21] S. Song, A. Lopez-Valdivieso, D.J. Hernandez-Campos, C. Peng, M.G. Monroy-Fernandez, I. Razo-Soto, Arsenic removal from high-arsenic water by enhanced coagulation with ferric ions and coarse calcite, Water Res. 40 (2006) 364-372.
[22] W.W. Ngah, M.A.K.M. Hanafiah, Removal of heavy metal ions from wastewater by chemically modified plant wastes as adsorbents: a review, Bioresour. Technol. 99 (2008) 3935-3948.
[23] H. Katsumata, T. Kobayashi, S. Kaneco, T. Suzuki, K. Ohta, Degradation of linuron by ultrasound combined with photo-Fenton treatment, Chem. Eng. J. 166 (2011) 468-473.
[24] T. Zhou, T.T. Lim, S.S. Chin, A.G. Fane, Treatment of organics in reverse osmosis concentrate from a municipal wastewater reclamation plant: feasibility test of advanced oxidation processes with/without pretreatment, Chem. Eng. J. 166 (2011) 932-939.
[25] M.I. Maldonado, S. Malato, L.A. Pérez-Estrada, W. Gernjak, I. Oller, X. Doménech, J. Peral, Partial degradation of five pesticides and an industrial pollutant by ozonation in a pilot-plant scale reactor, J. Hazard. Mater. 138 (2006) 363-369.
[26] L.J. Banasiak, B. Van der Bruggen, A.I. Schäfer, Sorption of pesticide endosulfan by electrodialysis membranes, Chem. Eng. J. 166 (2011) 233-239.
[27] A. Kumar, M. Naushad, A. Rana, Inamuddin, Preeti, G. Sharma, A.A. Ghfar, F.J. Stadler, M.R. Khan, ZnSe-WO3 nano-hetero-assembly stacked on Gum ghatti for photo-degradative removal of Bisphenol A: Symbiose of adsorption and photocatalysis, Int. J. Biol. Macromol. 104 (2017) 1172–1184.
[28] S.O. Lesmana, N. Febriana, F.E. Soetaredjo, J. Sunarso, S. Ismadji, Studies on potential applications of biomass for the separation of heavy metals from water and wastewater, Biochem. Eng. J. 44 (2009) 19-41.
[29] L.S. Oliveira, A.S. Franca, T.M. Alves, S.D. Rocha, Evaluation of untreated coffee husks as potential biosorbents for treatment of dye contaminated waters, J. Hazard. Mater.155 (2008) 507-512.
[30] M. Imamoglu, Adsorption of Cd (II) ions onto activated carbon prepared from hazelnut husks, J. Dispersion Sci. Technol. 34 (2013) 1183-1187.
[31] L. Zheng, Z. Dang, X. Yi, H. Zhang, Equilibrium and kinetic studies of adsorption of Cd (II) from aqueous solution using modified corn stalk, J. Hazard. Mater. 176 (2010) 650-656.
[32] M. Jalali, F. Aboulghazi, Sunflower stalk, an agricultural waste, as an adsorbent for the removal of lead and cadmium from aqueous solutions, J. Mater. Cycles Waste Manage. 15 (2013) 548-555.
[33] K.K. Krishnani, X. Meng, L. Dupont, Metal ions binding onto lignocellulosic biosorbent, J. Environ. Sci. Health Part A. 44 (2009) 688-699.
[34] L.H. Velazquez-Jimenez, J. Andrea-Pavlick, R. Rangel-Mendez, Chemical characterization of raw and treated agave bagasse and its potential as adsorbent of metal cations from water, Ind. Crops Prod. 43 (2013) 200-206.
[35] P.S. Kumar, S. Ramalingam, S.D. Kirupha, A. Murugesan, T. Vidhyadevi, S. Sivanesan, Adsorption behavior of nickel (II) onto cashew nut shell: Equilibrium, thermodynamics, kinetics, mechanism and process design, Chem. Eng. J. 167 (2011) 122-131.
[36] C.P.J. Isaac, A. Sivakumar, Removal of lead and cadmium ions from water using Annona squamosa shell: kinetic and equilibrium studies, Desalin. Water Treat. 51 (2013) 7700-7709.
[37] E. Pehlivan, T. Altun, Ş. Parlayici. Modified barley straw as a potential biosorbent for removal of copper ions from aqueous solution, Food Chem. 135 (2012) 2229-2234.
[38] U. Farooq, M.A. Khan, M. Athar, J.A. Kozinski, Effect of modification of environmentally friendly biosorbent wheat (Triticum aestivum) on the biosorptive removal of cadmium (II) ions from aqueous solution, Chem. Eng. J. 171 (2011) 400-410.
[39] Y. Ding, J. Debing, G. Huili, Z. Lianbi, Y. Xiaosong, Biosorption of aquatic cadmium (II) by unmodified rice straw, Bioresour. Technol. 114 (2012) 20-25.
[40] H. Aydın, B. Yasemin, Y. Çiğdem, Removal of copper(II) from aqueous solution by adsorption onto low-cost adsorbents, J. Environ. Manag. 87 (2008) 37-45.
[41] G. Tan, X. Dan, Adsorption of cadmium ion from aqueous solution by ground wheat stems, J. Hazard. Mater. 164 (2009) 1359-1363.
[42] M. Nameni, M.A. Moghadam, M. Arami, Adsorption of hexavalent chromium from aqueous solutions by wheat bran, Int. J. Environ. Sci. Technol. 5 (2008) 161-168.
[43] S. Mittal, U. Vaid, G. Nabi Najar, J.N. Babu, Removal of hexavalent chromium from aqueous solution: a comparative study of cone biomass of “Picea smithiana” and activated charcoal, Desalin. Water Treat. 57 (2016) 11081-11095.
[44] H. Ucun, Y.K. Bayhan, Y. Kaya, A. Cakici, O.F. Algur, Biosorption of chromium (VI) from aqueous solution by cone biomass of Pinus sylvestris, Bioresour. Technol. 85 (2002) 155-158.
[45] E. Khoramzadeh, B. Nasernejad, R. Halladj, Mercury biosorption from aqueous solutions by sugarcane bagasse, J. Taiwan Inst. Chem. E. 44 (2013) 266-269.
[46] N. Fiol, I. Villaescusa, M. Martínez, N. Miralles, J. Poch, J. Serarols, Sorption of Pb(II), Ni(II), Cu(II) and Cd(II) from aqueous solution by olive stone waste, Sep. Purif. Technol. 50 (2006) 132-140.
[47] D.Z. Husein, Adsorption and removal of mercury ions from aqueous solution using raw and chemically modified Egyptian mandarin peel, Desalin. Water Treat. 51 (2013) 6761-6769.
[48] A. Witek-Krowiak, Analysis of temperature-dependent biosorption of Cu 2+ ions on sunflower hulls: kinetics, equilibrium and mechanism of the process, Chem. Eng. J. 192 (2012) 13-20.
[49] S.T. Akar, A.S. Özcan, T. Akar, A. Özcan, Z. Kaynak, Biosorption of a reactive textile dye from aqueous solutions utilizing an agro-waste, Desalination. 249 (2009) 757-761.
[50] S.K. Deokar, S.A. Mandavgane, Rice husk ash for fast removal of 2,4-dichlorophenoxyacetic acid from aqueous solution, Adsorpt. Sci. Technol. 33 (2015) 429-440.
[51] F. Deniz, S. Karaman, Removal of an azo-metal complex textile dye from colored aqueous solutions using an agro-residue, Microch. J. 99 (2011) 296-302.
[52] H. Parab, M. Sudersanan, N. Shenoy, T. Pathare, B. Vaze, Use of agro‐industrial wastes for removal of basic dyes from aqueous solutions, CLEAN–Soil, Air, Water. 37 (2009) 963-969.
[53] M.R. Malekbala, S. Hosseini, S.K. Yazdi, S.M. Soltani, M.R. Malekbala, The study of the potential capability of sugar beet pulp on the removal efficiency of two cationic dyes, Chem. Eng. Res. Des. 90 (2012) 704-712.
[54] R. Rojas, J. Morillo, J. Usero, E. Vanderlinden, H. El Bakouri, Adsorption study of low-cost and locally available organic substances and a soil to remove pesticides from aqueous solutions, J. Hydrol. 520 (2015) 461-472.
[55] S. Sadaf, H.N. Bhatti, S. Ali, K.U. Rehman, Removal of Indosol Turquoise FBL dye from aqueous solution by bagasse, a low cost agricultural waste: batch and column study, Desalin. Water Treat. 52 (2014) 184-198.
[56] M. Asgher, H.N. Bhatti, Evaluation of thermodynamics and effect of chemical treatments on sorption potential of Citrus waste biomass for removal of anionic dyes from aqueous solutions, Ecol. Eng. 38 (2012) 79-85.
[57] J.L. Gardea-Torresdey, J.R. Peralta-Videa, M. Montes, G. De la Rosa, B. Corral-Diaz, Bioaccumulation of cadmium, chromium and copper by Convolvulus arvensis L.: impact on plant growth and uptake of nutritional elements, Bioresour. Technol. 92 (2004) 229-235.
[58] P.S. Nobel, Achievable productivities of certain CAM plants: basis for high values compared with C3 and C4 plants, New Phytol. 119 (1991) 183-205.
[59] H. Chen, Chemical composition and structure of natural lignocellulose. In Biotechnology of lignocellulose, Springer, Netherlands, 2014, pp. 25-71.
[60] Y. Zhou, L. Zhang, Z. Cheng, Removal of organic pollutants from aqueous solution using agricultural wastes: A review, J. Mol. Liq. 212 (2015) 739-762.
[61] J.A. Laszlo, F.R. Dintzis, Crop resides as Ion‐exchange materials. Treatment of soybean hull and sugar beet fiber (pulp) with epichlorohydrin to improve cation‐exchange capacity and physical stability, J. Appl. Polym. Sci. 52 (1994) 531-538.
[62] B. Acemioglu, M.H. Alma, Equilibrium studies on adsorption of Cu (II) from aqueous solution onto cellulose, J. Colloid Interface Sci. 243 (2001) 81-84.
[63] A. Demirbas, Heavy metal adsorption onto agro-based waste materials: a review, J. Hazard. Mater. 157 (2008) 220-229.
[64] A. Bhatnagar, A.K. Minocha, M. Sillanpää, Adsorptive removal of cobalt from aqueous solution by utilizing lemon peel as biosorbent, Biochem. Eng. J. 48 (2010) 181-186.
[65] M.N. Zafar, I. Aslam, R. Nadeem, S. Munir, U.A. Rana, S.U.D. Khan, Characterization of chemically modified biosorbents from rice bran for biosorption of Ni (II), J. Taiwan Inst. Chem. Eng. 46 (2015) 82-88.
[66] Y.Y. Pei, J.Y. Liu, J.Y. Wang, M.W. Huang, J. Lan, H.M. Cai, Experimental study on adsorption of lead ions in water using grapefruit husk [J], Guangdong Agri. Sci. 16 (2011) 054.
[67] X. Li, Y. Tang, Z. Xuan, Y. Liu, F. Luo, Study on the preparation of orange peel cellulose adsorbents and biosorption of Cd2+ from aqueous solution, Sep. Purif. Technol. 55 (2007) 69-75.
[68] N.C. Feng, X.Y. Guo, Characterization of adsorptive capacity and mechanisms on adsorption of copper, lead and zinc by modified orange peel, Trans. Nonferrous Met. Soc. China 22 (2012) 1224-1231.
[69] S. Liang, X.Y. Guo, N.C. Feng, Q.H. Tian, Effective removal of heavy metals from aqueous solutions by orange peel xanthate, Trans. Nonferrous Met. Soc. China 20 (2010) 187-191.
[70] S. Liang, X. Guo, Q. Tian, Adsorption of Pb2+ and Zn 2+ from aqueous solutions by sulfured orange peel, Desalination 275 (2011) 212-216.
[71] R. Chidambaram, Rice husk as a low cost nano sorbent for 2,4-dichlorophenoxyacetic acid removal from aqueous solutions, Ecol. Eng. 92 (2016) 97-105.
[72] O. SiewTeng, K. PeiSin, C. AiWen, L. SiewLing, Y.T. Hung, Tartaric acid modified rice hull as a sorbent for methylene blue removal, Am. J. Environ. Sci. 6 (2010) 244-248.
[73] Z. Ding, X. Hu, A.R. Zimmerman, B. Gao, Sorption and cosorption of lead(II) and methylene blue on chemically modified biomass, Bioresour. Technol. 167 (2014) 569-573.
[74] S. Kushwaha, G. Sreelatha, P. Padmaja, Evaluation of acid-treated palm shell powder for its effectiveness in the adsorption of organophosphorus pesticides: isotherm, kinetics, and thermodynamics, J. Chem. Eng. Data 56 (2011) 2407-2415.
[75] N.S. Trivedi, R.A. Kharkar, S.A. Mandavgane, 2, 4-Dichlorophenoxyacetic acid adsorption on adsorbent prepared from groundnut shell: Effect of preparation conditions on equilibrium adsorption capacity: Submitted to Arabian Journal of Chemistry (2016).
[76] J. Lehmann, S. Joseph, Biochar for environmental management: science, technology and implementation, IInd Ed., Routledge, 2015.
[77] H. Cederlund, E. Börjesson, J. Stenström, Effects of a wood-based biochar on the leaching of pesticides chlorpyrifos, diuron, glyphosate and MCPA, J. Environ. Manage. 191 (2017) 28-34.
[78] H. Cheng, D.L. Jones, P. Hill, M.S. Bastami, Biochar concomitantly increases simazine sorption in sandy loam soil and lowers its dissipation, Arch. Agron. Soil Sci. (2016) 1-11.
[79] R.S. Kookana, The role of biochar in modifying the environmental fate, bioavailability, and efficacy of pesticides in soils: a review, Soil Res. 48 (2010) 627-637.
[80] H.F. Shaalan, M.H. Sorour, S.R. Tewfik, Simulation and optimization of a membrane system for chromium recovery from tanning wastes, Desalination 141 (2001) 315-324.
[81] J.K. Brennan, T.J. Bandosz, K.T. Thomson, K.E. Gubbins, Water in porous carbons, Colloids Surf. A. 187 (2001) 539-568.
[82] D. Mohan, C.U. Pittman, P.H. Steele, Pyrolysis of wood/biomass for bio-oil: a critical review, Energy Fuels 20 (2006) 848-889.
[83] R. Brown, Biochar production technology, in: J. Lehmann, S. Joseph (Eds.), Biochar for Environmental Management Science and Technology, Earthscans, UK, 2009, pp. 127-146.
[84] S.P. Sohi, E. Krull, E. Lopez-Capel, R. Bol, A review of biochar and its use and function in soil, Adv. Agron. 105 (2010) 47-82.
[85] M. Ahmad, A.U. Rajapaksha, J.E. Lim, M. Zhang, N. Bolan, D. Mohan, M. Vithanage, S.S. Lee, Y.S. Ok, Biochar as a sorbent for contaminant management in soil and water: a review, Chemosphere. 99 (2014) 19-33.
[86] J.W. Lee, M. Kidder, B.R. Evans, S. Paik, A.C. Buchanan III, C.T. Garten, R.C. Brown, Characterization of biochars produced from corn stovers for soil amendment, Environ. Sci. Technol. 44 (2010) 7970–7974.
[87] M. Keiluweit, M. Kleber, Molecular-level interactions in soils and sediments: the role of aromatic π-systems, Environ. Sci. Technol. 43 (2009) 3421-3429.
[88] P. McKendry, Energy production from biomass (part 2): conversion technologies, Bioresour. Technol. 83 (2002) 47-54.
[89] M.B. Ahmed, J.L. Zhou, H.H. Ngo, W. Guo, M. Chen, Progress in the preparation and application of modified biochar for improved contaminant removal from water and wastewater, Bioresour. Technol. 214 (2016) 836-851.
[90] R. Azargohar, A.K. Dalai, Steam and KOH activation of biochar: Experimental and modeling studies, Microporous Mesoporous Mater. 110 (2008) 413-421.
[91] I.M. Lima, A.A. Boateng, K.T. Klasson, Physicochemical and adsorptive properties of fast‐pyrolysis bio‐chars and their steam activated counterparts, J. Chem. Technol. Biotechnol. 85 (2010) 1515-1521.
[92] B. Wang, Y.S. Jiang, F.Y. Li, D.Y. Yang, Preparation of biochar by simultaneous carbonization, magnetization and activation for norfloxacin removal in water, Bioresour. Technol. 233 (2017) 159-165.
[93] Y. Li, J. Shao, X. Wang, Y. Deng, H. Yang, H. Chen, Characterization of modified biochars derived from bamboo pyrolysis and their utilization for target component (furfural) adsorption, Energy Fuels 28 (2014) 5119–5127.
[94] W. Shen, Z. Li, Y. Liu, Surface chemical functional groups modification of porous carbon, Recent Patents Chem. Eng. 1 (2008) 27–40.
[95] D. Angin, E. Altintig, T.E. Köse, Influence of process parameters on the surface and chemical properties of activated carbon obtained from biochar by chemical activation, Bioresour. Technol. 148 (2013) 542-549.
[96] Y. Zhou, B. Gao, A.R. Zimmerman, J. Fang, Y. Sun, X. Cao, Sorption of heavy metals on chitosan-modified biochars and its biological effects, Chem. Eng. J. 231 (2013) 512-518.
[97] M.M. Zhang, Y.G. Liu, T.T. Li, W.H. Xu, B.H. Zheng, X.F. Tan, H. Wang, Y.M. Guo, F.Y. Guo, S.F. Wang, Chitosan modification of magnetic biochar produced from Eichhornia crassipes for enhanced sorption of Cr(VI) from aqueous solution, RSC Adv. 5 (2015) 46955–46964.
[98] Y. Ma, W.J. Liu, N. Zhang, Y.S. Li, H. Jiang, G.P. Sheng, Polyethylenimine modified biochar adsorbent for hexavalent chromium removal from the aqueous solution, Bioresour. Technol. 169 (2014) 403–408.
[99] B. Seyhi, P. Drogui, P. Gortares‐Moroyoqui, M.I. Estrada‐Alvarado, L.H. Alvarez, Adsorption of an organochlorine pesticide using activated carbon produced from an agro‐waste material, J. Chem. Technol. Biotechnol. 89 (2014) 1811-1816.
[100] Y. Yang, G. Sheng, Enhanced pesticide sorption by soils containing particulate matter from crop residue burns, Environ. Sci. Technol. 37 (2003) 3635-3639.
[101] M. Ahmad, S.S. Lee, X. Dou, D. Mohan, J.K. Sung, J.E. Yang, Y.S. Ok, Effects of pyrolysis temperature on soybean stover-and peanut shell-derived biochar properties and TCE adsorption in water, Bioresour. Technol. 118 (2012) 536-544.
[102] S.D. Joseph, M. Camps-Arbestain, Y. Lin, P. Munroe, C.H. Chia, J. Hook, L. Van Zwieten, S. Kimber, A. Cowie, B.P. Singh, J. Lehmann, An investigation into the reactions of biochar in soil, Soil Res. 48 (2010) 501-515.
[103] W. Chen, L. Duan, L. Wang, D. Zhu, Adsorption of hydroxyl-and amino-substituted aromatics to carbon nanotubes, Environ. Sci. Technol. 42 (2008) 6862-6868.
[104] X. Qu, L. Xiao, D. Zhu, Site-specific adsorption of 1,3-Dinitrobenzene to bacterial surfaces: A mechanism of–π electron-donor-acceptor interactions, J. Environ. Qual. 37 (2008) 824-829.
[105] J.J. Pignatello, S. Kwon, Y. Lu, Effect of natural organic substances on the surface and adsorptive properties of environmental black carbon (char): attenuation of surface activity by humic and fulvic acids, Environ. Sci. Technol. 40 (2006) 7757-7763.
[106] S. Kwon, J.J. Pignatello, Effect of natural organic substances on the surface and adsorptive properties of environmental black carbon (char): pseudo pore blockage by model lipid components and its implications for N2-probed surface properties of natural sorbents, Environ. Sci. Technol. 39 (2005) 7932-7939.
[107] G. Cornelissen, Ö. Gustafsson, Sorption of phenanthrene to environmental black carbon in sediment with and without organic matter and native sorbates, Environ. Sci. Technol. 38 (2004) 148-155.
[108] Q. Li, V.L. Snoeyink, B.J. Mariãas, C. Campos, Elucidating competitive adsorption mechanisms of atrazine and NOM using model compounds, Water Res. 37 (2003) 773-784.
[109] W.J. Braida, J.J. Pignatello, Y. Lu, P.I. Ravikovitch, A.V. Neimark, B. Xing, Sorption hysteresis of benzene in charcoal particles, Environ. Sci. Technol. 37 (2003) 409-417.
[110] A.R. Chughtai, G.R. Williams, M.M.O. Atteya, N.J. Miller, D.M. Smith, Carbonaceous particle hydration, Atmos. Environ. 33 (1999) 2679-2687.
[111] X. Chen, G. Chen, L. Chen, Y. Chen, J. Lehmann, M.B. McBride, A.G. Hay, Adsorption of copper and zinc by biochars produced from pyrolysis of hardwood and corn straw in aqueous solution, Bioresour. Technol. 102 (2011) 8877-8884.
[112] X.J. Tong, J.Y. Li, J.H. Yuan, R.K. Xu, Adsorption of Cu(II) by biochars generated from three crop straws, Chem. Eng. J. 172 (2011) 828-834.
[113] P. Regmi, J.L. García-Moscoso, S. Kumar, X. Cao, J. Mao, G. Schafran, Removal of copper and cadmium from aqueous solution using switchgrass biochar produced via hydrothermal carbonization process, J. Environ. Manage. 109 (2012) 61-69.
[114] J. Jiang, R.K. Xu, Application of crop straw derived biochars to Cu(II) contaminated Ultisol: evaluating role of alkali and organic functional groups in Cu(II) immobilization, Bioresour. Technol. 133 (2013) 537-545.
[115] L. Trakal, R. Šigut, H. Šillerová, D. Faturíková, M. Komárek, Copper removal from aqueous solution using biochar: effect of chemical activation, Arab. J. Chem. 7 (2014) 43-52.
[116] A. Bogusz, P. Oleszczuk, R. Dobrowolski, Application of laboratory prepared and commercially available biochars to adsorption of cadmium, copper and zinc ions from water, Bioresour. Technol. 196 (2015) 540-549.
[117] Z. Liu, F.S. Zhang, Removal of lead from water using biochars prepared from hydrothermal liquefaction of biomass, J. Hazard. Mater. 167 (2009) 933-939.
[118] D. Mohan, H. Kumar, A. Sarswat, M. Alexandre-Franco, C.U. Pittman Jr, Cadmium and lead remediation using magnetic oak Wood and oak bark fast pyrolysis bio-chars, Chem. Eng. J. 236 (2014) 513-528.
[119] J. Zhang, P. Zheng, A preliminary investigation of the mechanism of hexavalent chromium removal by corn-bran residue and derived chars, RSC Adv. 5 (2015) 17768-17774.
[120] D. Arán, J. Antelo, S. Fiol, F. Macías, Influence of feedstock on the copper removal capacity of waste-derived biochars, Bioresour. Technol. 212 (2016) 199-206.
[121] N. Zhou, H. Chen, J. Xi, D.Yao, Z. Zhou, Y. Tian, X. Lu, Biochars with excellent Pb (II) adsorption property produced from fresh and dehydrated banana peels via hydrothermal carbonization, Bioresour. Technol. 232 (2017) 204-210.
[122] M. Li, Q. Liu, L. Guo, Y. Zhang, Z. Lou, Y. Wang, G. Qian, Cu(II) removal from aqueous solution by Spartina alterniflora derived biochar, Bioresour. Technol. 141 (2013) 83-88.
[123] H. Cederlund, E. Börjesson, D. Lundberg, J. Stenström, Adsorption of pesticides with different chemical properties to a wood biochar treated with heat and iron, Water Air Soil Pollut. 227 (2016) 1-12.
[124] M. Essandoh, D. Wolgemuth, C.U. Pittman, D. Mohan, T. Mlsna, Adsorption of metribuzin from aqueous solution using magnetic and nonmagnetic sustainable low-cost biochar adsorbents, Environ. Sci. Pollut. Res. 24 (2016) 4577-4590.
[125] O.A. Ioannidou, A.A. Zabaniotou, G.G. Stavropoulos, M.A. Islam, T.A. Albanis, Preparation of activated carbons from agricultural residues for pesticide adsorption, Chemosphere 80 (2010) 1328-1336.
[126] A. Mandal, N. Singh, T.J. Purakayastha, Characterization of pesticide sorption behaviour of slow pyrolysis biochars as low cost adsorbent for atrazine and imidacloprid removal, Sci. Total Environ. 577 (2017) 376-385.
[127] G.O. El-Sayed, M.M. Yehia, A.A. Asaad, Assessment of activated carbon prepared from corncob by chemical activation with phosphoric acid, Water Resour. Ind. 7 (2014) 66-75.
[128] D.D. Sewu, P. Boakye, S.H. Woo, Highly efficient adsorption of cationic dye by biochar produced with Korean cabbage waste, Bioresour. Technol. 224 (2017) 206-213.
[129] P. Sathishkumar, M. Arulkumar, T. Palvannan, Utilization of agro-industrial waste Jatropha curcas pods as an activated carbon for the adsorption of reactive dye Remazol Brilliant Blue R (RBBR), J. Cleaner Prod. 22 (2012) 67-75.
[130] S.M. Yakout, Monitoring the changes of chemical properties of rice straw-derived biochars modified by different oxidizing agents and their adsorptive performance for organics, Biorem. J.19 (2015) 171-182.
[131] S. Yavari, A. Malakahmad, N.B. Sapari, S. Yavari, Sorption-desorption mechanisms of imazapic and imazapyr herbicides on biochars produced from agricultural wastes, J. Environ. Chem. Eng. 4 (2016) 3981-3989.
[132] B. Wang, Y.S. Jiang, F.Y. Li, D.Y. Yang, Preparation of biochar by simultaneous carbonization, magnetization and activation for norfloxacin removal in water, Bioresour. Technol. 233 (2017) 159-165.
[133] A. Cabrera, L. Cox, K.U.R.T. Spokas, M.C. Hermosín, J. Cornejo, W.C. Koskinen, Influence of biochar amendments on the sorption–desorption of aminocyclopyrachlor, bentazone and pyraclostrobin pesticides to an agricultural soil, Sci. Total Environ. 470 (2014) 470438-443.