Industrial Water Pollution and Treatment – Can Membranes be a Solution?


Industrial Water Pollution and Treatment – Can Membranes be a Solution?

C.G. Lopresto, D. Mukherjee, K.A.B. Zabala, V. Calabro, S. Curcio, S. Chakraborty

Industry is one of the main sources of water pollution since a long time and currently increasing day by day. Industries produces pollutants that are not only extremely harmful to people but also to the aquatic environment. Many industrial facilities use freshwater to carry away waste from the industrial plants into rivers, lakes and oceans. During the last century a huge amount of industrial wastewater was discharged into rivers, lakes and coastal areas. This resulted in serious pollution problems in the water bodies and caused negative effects to the eco-system and human’s life. There are many types of industrial wastewater pollutants based on different industries and each sector produces its own particular combination of pollutants from the processes. The technology for the treatment of industrial wastewater must be designed more specifically for the particular type of pollutants produced. Membrane has made important contributions to the welfare of people with positive quality of life more than the majority of all other disciplines. In this chapter most of the industrial pollutants and their membrane based treatment mechanisms are described.

Membrane, Bioreactor, Industrial Wastewater, Water Pollution, Environmental Impact, Membrane Materials

Published online 4/1/2018, 57 pages


Part of Organic Pollutants in Wastewater I

[1] R. Rajagopal, N.M.C. Saady, M. Torrijos, J.V. Thanikal, Y.-T. Hung, Sustainable Agro-Food Industrial Wastewater Treatment Using High Rate Anaerobic Process, Water. 5 (2013) 292–311.
[2] J.P. Kushwaha, A review on sugar industry wastewater: sources, treatment technologies, and reuse, Desalin. Water Treat. 53 (2017) 309–318.
[3] A. Chaudhary, A. Sharma, B. Singh, Study of physio-chemical characteristics and biological treatment of molasses-based distillery effluent, Int. J. Bioassays. 2 (2013) 612–615.
[4] P.M. Ayyasamy, R. Yasodha, S. Rajakumar, P. Lakshmanaperumalsamy, P.K.S.M. Rahman, S. Lee, Impact of Sugar Factory Effluent on the Growth and Biochemical Characteristics of Terrestrial and Aquatic Plants, Bull. Environ. Contam. Toxicol. 81 (2008) 449–454.
[5] C.F. Bennani, B. Ousji, D.J. Ennigrou, Desalination and Water Treatment Reclamation of dairy wastewater using ultrafiltration process, Desalin. Water Treat. Publ. 55 (2014) 37–41.
[6] F. Battista, D. Fino, F. Erriquens, G. Mancini, B. Ruggeri, Scaled-up experimental biogas production from two agro-food waste mixtures having high inhibitory compound concentrations, Renew. Energy. 81 (2015)
[7] N. Adhoum, L. Monser, Decolourization and removal of phenolic compounds from olive mill wastewater by electrocoagulation, Chem. Eng. Process. Process Intensif. 43 (2004) 1281–1287.
[8] R. Ganesh, R. Rajinikanth, J.V. Thanikal, R.A. Ramanujam, M. Torrijos, Anaerobic treatment of winery wastewater in fixed bed reactors, Bioprocess Biosyst. Eng. 33 (2010) 619–628.
[9] C. Wei, T. Zhang, C. Feng, H. Wu, Z. Deng, C. Wu, B. Lu, Treatment of food processing wastewater in a full-scale jet biogas internal loop anaerobic fluidized bed reactor, Biodegradation. 22 (2011) 347–357.
[10] R.P. Singh, M.H. Ibrahim, N. Esa, M.S. Iliyana, Composting of waste from palm oil mill: a sustainable waste management practice, Rev. Environ. Sci. Bio/Technology. 9 (2010) 331–344.
[11] Y. Jiang, H. Wang, Y. Shang, K. Yang, Simultaneous removal of aniline, nitrogen and phosphorus in aniline-containing wastewater treatment by using sequencing batch reactor, Bioresour. Technol. 207 (2016) 422–429.
[12] A. Solovchenko, A.M. Verschoor, N.D. Jablonowski, L. Nedbal, Phosphorus from wastewater to crops: An alternative path involving microalgae, Biotechnol. Adv. 34 (2016) 550–564.
[13] P.O. Sahu, P.K. Chaudhari, The Characteristics , Effects , and Treatment of Wastewater in Sugarcane Industry, Water Qual. Expo. Heal. 7 (2015) 435–444.
[14] C. Becerra-Castro, A.R. López, I. Vaz-Moreira, E.F. Silva, C.M. Manaia, O.C. Nunes, Wastewater reuse in irrigation: a microbiological perspective on implications in soil fertility and human and environmental health, Environ. Int. 75 (2015) 117–135.
[15] A. Hinkova, Z. Bubnık, P. Kadlec, J. Pridal, Potentials of separation membranes in the sugar industry, Sep. Purif. Technol. 26 (2002) 101–110.
[16] C.H. Neoh, Z.Z. Noor, N.S.A. Mutamim, K.C. Lim, Green technology in wastewater treatment technologies: Integration of membrane bioreactor with various wastewater treatment systems, Chem. Eng. J. 283 (2016) 582–594.
[17] J. Akunna, J. Bartie, Wastewater Treatment Infrastructure and Design, in: Colin A. Booth and Susanne M. Charlesworth (Ed.), Water Resour. Built Environ. Manag. Issues Solut., First Edit, John Wiley & Sons, Ltd., 2014: pp. 350–370.
[18] M. Khan, U. Kalsoom, T. Mahmood, M. Riaz, R. Khan, Characterization and treatment of industrial effluents from sugar industry, J. Chem. Soc. Pak. 25 (2003).
[19] A. Cassano, C. Conidi, E. Drioli, Comparison of the performance of UF membranes in olive mill wastewaters treatment, Water Res. 45 (2011) 3197–3204.
[20] J.M.O. Pulido, A review on the use of membrane technology and fouling control for olive mill wastewater treatment, Sci. Total Environ. 563–564 (2016) 664–675.
[21] A.Y. Gebreyohannes, R. Mazzei, L. Giorno, Trends and current practices of olive mill wastewater treatment: Application of integrated membrane process and its future perspective, Sep. Purif. Technol. 162 (2016) 45–60.
[22] A.C. Caputo, F. Scacchia, P.M. Pelagagge, Disposal of by-products in olive oil industry: waste-to-energy solutions, Appl. Therm. Eng. 23.2 (2003) 197–214.
[23] G. Taralas, M.G. Kontominas, Thermochemical treatment of solid and wastewater effluents originating from the olive oil food industry, Energy and Fuels. 19 (2005) 1179–1185.
[24] N. Adhoum, M. Lotfi, Decolourization and removal of phenolic compounds from olive mill wastewater by electrocoagulation, Chem. Eng. Process. Process Intensif. 43.10 (2004) 1281–1287.
[25] L. Bertin, F. Ferri, A. Scoma, L. Marchetti, F. Fava, Recovery of high added value natural polyphenols from actual olive mill wastewater through solid phase extraction, Chem. Eng. J. 171 (2011) 1287–1293.
[26] J. Beltran de Heredia, J. Garcia, Process integration: Continuous Anaerobic digestion−ozonation treatment of olive mill wastewater, Ind. Eng. Chem. Res. 44 (2005) 8750–8755.
[27] A. Fiorentino, A. Gentili, M. Isidori, M. Lavorgna, A. Parrella, F. Temussi, Olive oil mill wastewater treatment using a chemical and biological approach, J. Agric. Food Chem. 52 (2004) 5151–5154.
[28] I.P. Marques, Anaerobic digestion treatment of olive mill wastewater for effluent re-use in irrigation, Desalination 137 (2001) 233–239.
[29] A. Rozzi, F. Malpei, Treatment and disposal of olive mill effluents, Int. Biodeterior. Biodegradation. 38 (1996) 135–144.
[30] A. Ranalli, L. Lucera, S. Contento, antioxidizing potency of phenol compounds in olive oil mill wastewater, J. Agric. Food Chem. 51 (2003) 7636–7641.
[31] F. Visioli, A. Romani, N. Mulinacci, S. Zarini, D. Conte, F.F. Vincieri, C. Galli, Antioxidant and other biological activities of olive mill waste waters, J. Agric. Food Chem. 47 (1999) 3397–3401.
[32] G. Bisignano, A. Tomaino, R. Lo Cascio, G. Crisafi, N. Uccella, A. Saija, On the in-vitro antimicrobial activity of oleuropein and hydroxytyrosol, J. Pharm. Pharmacol. 51 (1999) 971–974.
[33] S. Takaç, A. Karakaya, Recovery of Phenolic Antioxidants from Olive Mill Wastewater, Recent Patents Chem. Eng. 2 (2009) 230–237.
[34] F. Federici, F. Fava, N. Kalogerakis, D. Mantzavinos, Valorisation of agro-industrial by-products, effluents and waste: Concept, opportunities and the case of olive mill waste waters, J. Chem. Technol. Biotechnol. 84 (2009) 895–900.
[35] O.A. Mudimu, M. Peters, F. Brauner, G. Braun, Overview of membrane processes for the recovery of polyphenols from olive mill wastewater olive mill wastewater, Am. J. Environ. Sci. 8 (2012) 195–201.
[36] H. Dhaouadi, B. Marrot, Olive mill wastewater treatment in a membrane bioreactor: Process feasibility and performances, Chem. Eng. J. 145 (2008) 225–231.
[37] T. Coskun, E. Debik, N.M. Demir, Treatment of olive mill wastewaters by nanofiltration and reverse osmosis membranes, Desalination. 259 (2010) 65–70.
[38] C. Russo, A new membrane process for the selective fractionation and total recovery of polyphenols, water and organic substances from vegetation waters (VW), J. Memb. Sci. 288 (2007) 239–246.
[39] M. Pizzichini, C. Russo, Process for recovering the components of olive mill wastewater with membrane technologies, WO2005/123603, 2005.
[40] A. El-Abbassi, A. Hafidi, M.C. García-Payo, M. Khayet, Concentration of olive mill wastewater by membrane distillation for polyphenols recovery, Desalination. 245 (2009) 670–674.
[41] S. Khoufi, F. Aloui, S. Sayadi, Pilot scale hybrid process for olive mill wastewater treatment and reuse, Chem. Eng. Process. Process Intensif. 48 (2009) 643–650.
[42] O. Yahiaoui, H. Lounici, N. Abdi, N. Drouiche, N. Ghaffour, A. Pauss, N. Mameri, Treatment of olive mill wastewater by the combination of ultrafiltration and bipolar electrochemical reactor processes, Chem. Eng. Process. Process Intensif. 50 (2011) 37–41.
[43] E. Garcia-Castello, A. Cassano, A. Criscuoli, C. Conidi, E. Drioli, Recovery and concentration of polyphenols from olive mill wastewaters by integrated membrane system, Water Res. 44 (2010) 3883–3892.
[44] M. Stoller, M. Bravi, Critical flux analyses on differently pretreated olive vegetation waste water streams: Some case studies, Desalination. 250 (2010) 578–582.
[45] E.O. Akdemir, A. Ozer, Investigation of two ultrafiltration membranes for treatment of olive oil mill wastewater, Desalination. 249 (2009) 660–666.
[46] A. Cassano, C. Conidi, L. Giorno, E. Drioli, Fractionation of olive mill wastewaters by membrane separation techniques, J. Hazard. Mater. 248–249 (2013) 185–193.
[47] C.A. Paraskeva, V.G. Papadakis, E. Tsarouchi, D.G. Kanellopoulou, P.G. Koutsoukos, Membrane processing for olive mill wastewater fractionation, Desalination. 213 (2007) 218–229.
[48] M. Stoller, Technical optimization of a dual ultrafiltration and nanofiltration pilot plant in batch operation by means of the critical flux theory: A case study, Chem. Eng. Process. Process Intensif. 47 (2008) 1165–1170.
[49] A. El-Abbassi, M. Khayet, A. Hafidi, Micellar enhanced ultrafiltration process for the treatment of olive mill wastewater, Water Res. 45 (2011) 4522–4530.
[50] M. Stoller, Effective fouling inhibition by critical flux based optimization methods on a NF membrane module for olive mill wastewater treatment, Chem. Eng. J. 168 (2011) 1140–1148.
[51] A. El-Abbassi, A. Hafidi, M. Khayet, M.C. García-Payo, Integrated direct contact membrane distillation for olive mill wastewater treatment, Desalination. 323 (2013) 31–38.
[52] A. El-Abbassi, H. Kiai, A. Hafidi, M.C. García-Payo, M. Khayet, Treatment of olive mill wastewater by membrane distillation using polytetrafluoroethylene membranes, Sep. Purif. Technol. 98 (2012) 55–61.
[53] A. El-Abbassi, M. Khayet, H. Kiai, A. Hafidi, M.C. García-Payo, Treatment of crude olive mill wastewaters by osmotic distillation and osmotic membrane distillation, Sep. Purif. Technol. 104 (2013) 327–332.
[54] C.A. Paraskeva, V.G. Papadakis, D.G. Kanellopoulou, P.G. Koutsoukos, K.C. Angelopoulos, Membrane filtration of olive mill wastewater and exploitation of its fractions, Water Environ. Res. 79 (2007).
[55] T.Y. Wu, A.W. Mohammad, J.M. Jahim, N. Anuar, Pollution control technologies for the treatment of palm oil mill effluent (POME) through end-of-pipe processes, J. Environ. Manage. 91 (2010) 1467–1490.
[56] Y. Zhang, L. Yan, X. Qiao, L. Chi, X. Niu, Z. Mei, Z. Zhang, Integration of biological method and membrane technology in treating palm oil mill effluent, J. Environ. Sci. 20 (2008) 558–564.
[57] A.L. Ahmad, C.Y. Chan, Sustainability of palm oil industries: an innovative treatment via membrane technology, J. Appl. Sci. 9 (2009) 3074–3079.
[58] T.Y. Wu, A.W. Mohammad, J.M. Jahim, N. Anuar, Palm oil mill effluent (POME) treatment and bioresources recovery using ultrafiltration membrane: Effect of pressure on membrane fouling, Biochem. Eng. J. 35 (2007) 309–317.
[59] P.E. Poh, M.F. Chong, Development of anaerobic digestion methods for palm oil mill effluent (POME) treatment, Bioresour. Technol. 100 (2009) 1–9.
[60] K. Vijayaraghavan, D. Ahmad, M. Ezani Bin Abdul Aziz, Aerobic treatment of palm oil mill effluent, J. Environ. Manage. 82 (2007) 24–31.
[61] A.L. Ahmad, M.F. Chong, S. Bhatia, A comparative study on the membrane based palm oil mill effluent (POME) treatment plant, J. Hazard. Mater. 171 (2009) 166–174.
[62] P.F. Rupani, P.S. Rajeev, M.H. Irahim, N. Esa, Review of current palm oil mill effluent (POME) Treatment methods: Vermicomposting as a sustainable practice, World Appl. Sci. J. 11 (2010) 70–81.
[63] J.C. Igwe, C.C. Onyegbado, A review of palm oil mill effluent (Pome) water treatment, Glob. J. Environ. Res. 1 (2007) 54–62.
[64] A.L. Ahmad, S. Ismail, S. Bhatia, Water recycling from palm oil mill effluent (POME) using membrane technology, Desalination. 157 (2003) 87–95.
[65] A.L. Ahmad, M.F. Chong, S. Bhatia, S. Ismail, Drinking water reclamation from palm oil mill effluent (POME) using membrane technology, Desalination. 191 (2006) 35–44.
[66] A. Damayanti, Z. Ujang, M.R. Salim, The influenced of PAC, zeolite, and Moringa oleifera as biofouling reducer (BFR) on hybrid membrane bioreactor of palm oil mill effluent (POME), Bioresour. Technol. 102 (2011) 4341–4346.
[67] T.Y. Wu, A.W. Mohammad, J.M. Jahim, N. Anuar, A holistic approach to managing palm oil mill effluent (POME): Biotechnological advances in the sustainable reuse of POME, Biotechnol. Adv. 27 (2009) 40–52.
[68] A.W. Mohammad, P.T. Yap, T.Y. Wu, Performance of hydrophobic ultrafiltration membranes in the treatment and protein recovery from palm oil mill effluent (POME), Desalin. Water Treat. 10 (2009) 332–338.
[69] A.L. Ahmad, M.F. Chong, S. Bhatia, Mathematical modeling of multiple solutes system for reverse osmosis process in palm oil mill effluent (POME) treatment, Chem. Eng. J. 132 (2007) 183–193.
[70] F.X. Milani, D. Nutter, G. Thoma, Environmental impacts of dairy processing and products: A review, J. Dairy Sci. 94 (2011) 4243–4254.
[71] T.J. Britz, C. van Schalkwyk, Y.-T. Hung, Treatment of dairy processing wastewater, in: Waste Treat. Food Process. Ind., CRC Press, Boca Raton, FL, 2006: pp. 1–28.
[72] B. Sarkar, P.P. Chakrabarti, A. Vijaykumar, V. Kale, Wastewater treatment in dairy industries – possibility of reuse, Desalination. 195 (2006) 141–152.
[73] C. Tocchi, E. Federici, L. Fidati, R. Manzi, V. Vincigurerra, M. Petruccioli, Aerobic treatment of dairy wastewater in an industrial three-reactor plant: Effect of aeration regime on performances and on protozoan and bacterial communities, Water Res. 46 (2012) 3334–3344.
[74] M. Jedrzejewska-Cicinska, K. Kozak, M. Krzemieniewski, A comparison of the technological effectiveness of dairy wastewater treatment in anaerobic UASB reactor and anaerobic reactor with an innovative design, Environ. Technol. 28 (2007) 1127–1133.
[75] S. Venkata Mohan, V. Lalit Babu, P.N. Sarma, Anaerobic biohydrogen production from dairy wastewater treatment in sequencing batch reactor (AnSBR): Effect of organic loading rate, Enzyme Microb. Technol. 41 (2007) 506–515.
[76] B. Demirel, O. Yenigun, T.T. Onay, Anaerobic treatment of dairy wastewaters: A review, Process Biochem. 40 (2005) 2583–2595.
[77] M. Passeggi, I. López, L. Borzacconi, Modified UASB reactor for dairy industry wastewater: Performance indicators and comparison with the traditional approach, J. Clean. Prod. 26 (2012) 90–94.
[78] P. Seesuriyachan, A. Kuntiya, K. Sasaki, C. Techapun, Biocoagulation of dairy wastewater by Lactobacillus casei TISTR 1500 for protein recovery using micro-aerobic sequencing batch reactor (micro-aerobic SBR), Process Biochem. 44 (2009) 406–411.
[79] S. Tchamango, C.P. Nanseu-Njiki, E. Ngameni, D. Hadjiev, A. Darchen, Treatment of dairy effluents by electrocoagulation using aluminium electrodes, Sci. Total Environ. 408 (2010) 947–952.
[80] S.L. Lansing, J.F. Martin, Use of an ecological treatment system (ETS) for removal of nutrients from dairy wastewater, Ecol. Eng. 28 (2006) 235–245.
[81] S. Venkata Mohan, G. Mohanakrishna, G. Velvizhi, V.L. Babu, P.N. Sarma, Bio-catalyzed electrochemical treatment of real field dairy wastewater with simultaneous power generation, Biochem. Eng. J. 51 (2010) 32–39.
[82] Y. Pouliot, Membrane processes in dairy technology-From a simple idea to worldwide panacea, Int. Dairy J. 18 (2008) 735–740.
[83] A. Chollangi, M.M. Hossain, Separation of proteins and lactose from dairy wastewater, Chem. Eng. Process. Process Intensif. 46 (2007) 398–404.
[84] J. Luo, L. Ding, Y. Wan, P. Paullier, M.Y. Jaffrin, Fouling behavior of dairy wastewater treatment by nanofiltration under shear-enhanced extreme hydraulic conditions, Sep. Purif. Technol. 88 (2012) 79–86.
[85] M. Rabiller-Baudry, H. Bouzid, B. Chaufer, L. Paugam, D. Delaunay, O. Mekmene, S. Ahmad, F. Gaucheron, On the origin of flux dependence in pH-modified skim milk filtration, Dairy Sci. Technol. 89 (2009) 363–385.
[86] M. Frappart, M. Jaffrin, L.H. Ding, Reverse osmosis of diluted skim milk: Comparison of results obtained from vibratory and rotating disk modules, Sep. Purif. Technol. 60 (2008) 321–329.
[87] M. Passeggi, I. López, L. Borzacconi, Integrated anaerobic treatment of dairy industrial wastewater and sludge, Water Sci. Technol. 59 (2009) 501–506.
[88] M.S. Yorgun, I. Akmehmet Balcioglu, O. Saygin, Performance comparison of ultrafiltration, nanofiltration and reverse osmosis on whey treatment, Desalination. 229 (2008) 204–216.
[89] J. Luo, L. Ding, B. Qi, M.Y. Jaffrin, Y. Wan, A two-stage ultrafiltration and nanofiltration process for recycling dairy wastewater, Bioresour. Technol. 102 (2011) 7437–7442.
[90] Y.-W. Gong, H.-X. Zhang, X.-N. Cheng, Treatment of dairy wastewater by two-stage membrane operation with ultrafiltration and nanofiltration, Water Sci. Technol. 65 (2012) 915–919.
[91] J. Luo, L. Ding, Influence of pH on treatment of dairy wastewater by nanofiltration using shear-enhanced filtration system, Desalination. 278 (2011) 150–156.
[92] B. Farizoglu, S. Uzuner, The investigation of dairy industry wastewater treatment in a biological high performance membrane system, Biochem. Eng. J. 57 (2011) 46–54.
[93] J. Luo, W. Cao, L. Ding, Z. Zhu, Y. Wan, M.Y. Jaffrin, Treatment of dairy effluent by shear-enhanced membrane filtration: The role of foulants, Sep. Purif. Technol. 96 (2012) 194–203.
[94] G. Rice, A. Barber, A. O’Connor, G. Stevens, S. Kentish, Fouling of NF membranes by dairy ultrafiltration permeates, J. Memb. Sci. 330 (2009) 117–126.
[95] R. Hepsen, Y. Kaya, Optimization of membrane fouling using experimental design: An example from dairy wastewater treatment, Ind. Eng. Chem. Res. 51 (2012) 16074–16084.
[96] J. Luo, L. Ding, Y. Wan, M.Y. Jaffrin, Threshold flux for shear-enhanced nanofiltration: Experimental observation in dairy wastewater treatment, J. Memb. Sci. 409–410 (2012) 276–284.
[97] J. Luo, L. Ding, Y. Wan, P. Paullier, M.Y. Jaffrin, Application of NF-RDM (nanofiltration rotating disk membrane) module under extreme hydraulic conditions for the treatment of dairy wastewater, Chem. Eng. J. 163 (2010) 307–316.
[98] A. Suárez, T. Fidalgo, F.A. Riera, Recovery of dairy industry wastewaters by reverse osmosis. Production of boiler water, Sep. Purif. Technol. 133 (2014) 204–211.
[99] M. Vourch, B. Balannec, B. Chaufer, G. Dorange, Treatment of dairy industry wastewater by reverse osmosis for water reuse, Desalination 219 (2008) 190–202.
[100] Z. Xu, G. Nakhla, J. Patel, Characterization and modeling of nutrient-deficient tomato-processing wastewater treatment using an anaerobic/aerobic system, Chemosphere 65 (2006) 1171–1181.
[101] M. Iaquinta, M. Stoller, C. Merli, Optimization of a nanofiltration membrane process for tomato industry wastewater effluent treatment, Desalination. 245 (2009) 314–320.
[102] P. Chowdhury, T. Viraraghavan, A. Srinivasan, Biological treatment processes for fish processing wastewater – A review, Bioresour. Technol. 101 (2010) 439–449.
[103] P.C. Sridang, J. Kaiman, A. Pottier, C. Wisniewski, Benefits of MBR in seafood wastewater treatment and water reuse: study case in Southern part of Thailand, Desalination. 200 (2006) 712–714.
[104] R.O. Cristóvão, C.M. Botelho, R.J.E. Martins, J.M. Loureiro, R.A.R. Boaventura, Fish canning industry wastewater treatment for water reuse – a case study, J. Clean. Prod. 87 (2015) 603–612.
[105] R. Cristóvão, C. Botelho, R. Martins, R. Boaventura, Chemical and Biological Treatment of Fish Canning Wastewaters, Int. J. Biosci. Biochem. Bioinforma. 2 (2012) 7763.
[106] R.O. Cristóvão, C. Gonçalves, C.M. Botelho, R.J.E. Martins, J.M. Loureiro, R.A.R. Boaventura, Fish canning wastewater treatment by activated sludge: Application of factorial design optimization. Biological treatment by activated sludge of fish canning wastewater., Water Resour. Ind. 10 (2015) 29–38.
[107] M.D. Afonso, R. Borquez, Review of the treatment of seafood processing wastewaters and recovery of proteins therein by membrane separation processes – Prospects of the ultrafiltration of wastewaters from the fish meal industry, Desalination 142 (2002) 29–45.
[108] M. Kuca, D. Szaniawska, Application of microfiltration and ceramic membranes for treatment of salted aqueous effluents from fish processing, Desalination 241 (2009) 227–235.
[109] R. Pérez-Gálvez, E.M. Guadix, J.P. Bergé, A. Guadix, Operation and cleaning of ceramic membranes for the filtration of fish press liquor, J. Memb. Sci. 384 (2011) 142–148.
[110] P.C. Sridang, A. Pottier, C. Wisniewski, A. Grasmick, Performance and microbial surveying in submerged membrane bioreactor for seafood processing wastewater treatment, J. Memb. Sci. 317 (2008) 43–49.
[111] P. Artiga, G. García-Toriello, R. Méndez, J.M. Garrido, Use of a hybrid membrane bioreactor for the treatment of saline wastewater from a fish canning factory, Desalination. 221 (2008) 518–525.
[112] M.R. Bilad, P. Declerck, A. Piasecka, L. Vanysacker, X. Yan, I.F.J. Vankelecom, Treatment of molasses wastewater in a membrane bioreactor: Influence of membrane pore size, Sep. Purif. Technol. 78 (2011) 105–112.
[113] D. Pant, A. Adholeya, Biological approaches for treatment of distillery wastewater: A review, Bioresour. Technol. 98 (2007) 2321–2334.
[114] Y. Satyawali, M. Balakrishnan, Wastewater treatment in molasses-based alcohol distilleries for COD and color removal: A review, J. Environ. Manage. 86 (2008) 481–497.
[115] S. Mohana, B.K. Acharya, D. Madamwar, Distillery spent wash: Treatment technologies and potential applications, J. Hazard. Mater. 163 (2009) 12–25.
[116] L.A. Ioannou, G.L. Puma, D. Fatta-Kassinos, Treatment of winery wastewater by physicochemical, biological and advanced processes: A review, J. Hazard. Mater. 286 (2015) 343–368.
[117] S.K. Nataraj, K.M. Hosamani, T.M. Aminabhavi, Distillery wastewater treatment by the membrane-based nanofiltration and reverse osmosis processes, Water Res. 40 (2006) 2349–2356.
[118] P.A. Shivajirao, Treatment of distillery wastewater using membrane technologies, Int. J. Adv. Eng. Res. Stud. I (2012) 275–283.
[119] Z.V.P. Murthy, L.B. Chaudhari, Treatment of Distillery Spent Wash By Combined UF and RO Processes, Glob. NEST J. 11 (2009) 235–240.
[120] U.K. Rai, M. Muthukrishnan, B.K. Guha, Tertiary treatment of distillery wastewater by nanofiltration, Desalination. 230 (2008) 70–78.
[121] C. Sagne, C. Fargues, R. Lewandowski, M.-L. Lameloise, M. Decloux, Screening of reverse osmosis membranes for the treatment and reuse of distillery condensates into alcoholic fermentation, Desalination. 219 (2008) 335–347.
[122] R. Gupta, Y. Satyawali, V.S. Batra, M. Balakrishnan, Submerged membrane bioreactor using fly ash filters: trials with distillery wastewater, Water Sci. Technol. 58 (2008) 1281–1284.
[123] Y. Satyawali, M. Balakrishnan, Treatment of distillery effluent in a membrane bioreactor (MBR) equipped with mesh filter, Sep. Purif. Technol. 63 (2008) 278–286.
[124] X.L. Melamane, P.J. Strong, J.E. Burgess, Treatent of wine distillery wastewater: a review with ephasis on anaerobic membrane reactors, S. Afr. J. Enol. Vitic. 28 (2007) 25–36.
[125] K.P.M. Mosse, A.F. Patti, E.W. Christen, T.R. Cavagnaro, Review: Winery wastewater quality and treatment options in Australia, Aust. J. Grape Wine Res. 17 (2011) 111–122.
[126] G. Lofrano, S. Meric, A comprehensive approach to winery wastewater treatment: a review of the state-of the-art, Desalin. Water Treat. 57 (2016) 3011–3028.
[127] P.J. Strong, J.E. Burgess, Treatment Methods for Wine-Related and Distillery Wastewaters: A Review, Bioremediat. J. 12 (2008) 70–8770.
[128] G. Andreottola, P. Foladori, G. Ziglio, Biological treatment of winery wastewater: An overview, Water Sci. Technol. 60 (2009) 1117–1125.
[129] N. Basset, S. López-Palau, J. Dosta, J. Mata-Álvarez, Comparison of aerobic granulation and anaerobic membrane bioreactor technologies for winery wastewater treatment, Water Sci. Technol. 69 (2014) 320–327.
[130] L.A. Ioannou, C. Michael, N. Vakondios, K. Drosou, N.P. Xekoukoulotakis, E. Diamadopoulos, D. Fatta-Kassinos, Winery wastewater purification by reverse osmosis and oxidation of the concentrate by solar photo-Fenton, Sep. Purif. Technol. 118 (2013) 659–669.
[131] C.M. Galanakis, E. Markouli, V. Gekas, Recovery and fractionation of different phenolic classes from winery sludge using ultrafiltration, Sep. Purif. Technol. 107 (2013) 245–251.
[132] A. Giacobbo, J.M. Do Prado, A. Meneguzzi, A.M. Bernardes, M.N. De Pinho, Microfiltration for the recovery of polyphenols from winery effluents, Sep. Purif. Technol. 143 (2015) 12–18.
[133] A. Giacobbo, M. Oliveira, E.C.N.F. Duarte, H.M.C. Mira, A.M. Bernardes, M.N. De Pinho, Ultrafiltration based process for the recovery of polysaccharides and polyphenols from winery effluents, Sep. Sci. Technol. 48 (2013) 438–444.
[134] A. Giacobbo, A.M. Bernardes, M.N. de Pinho, Nanofiltration for the Recovery of Low Molecular Weight Polysaccharides and Polyphenols from Winery Effluents, Sep. Sci. Technol. 48 (2013) 2524–2530.
[135] G. Andreottola, M. Cadonna, P. Foladori, G. Gatti, F. Lorenzi, P. Nardelli, Heavy metal removal from winery wastewater in the case of restrictive discharge regulation, Water Sci. Technol. 56 (2007) 111–120.
[136] P. Artiga, M. Carballa, J.M. Garrido, R. Méndez, Treatment of winery wastewaters in a membrane submerged bioreactor, Water Sci. Technol. 56 (2007) 63–69.
[137] A. Shah, J. Bulleri, R. Ross, J. Carter, M. Long, Successful plant scale winery wastewater treatment using membrane bioreactor in Northern California, in: Proc. Water Environ. Fed. (2008) 3408–3425.
[138] V. Ferre, A. Trepin, T. Giménez, S. Lluch, Design and performance of full-scale iMBR plants treating winery wastewater effluents in Italy and Spain, in: 5th Int. Spec. Conf. Sustain. Vitic. Winer. Waste Ecol. Impacts Manag., Trento, Italy, 2009: pp.
[139] G. Guglielmi, G. Andreottola, P. Foladori, G. Ziglio, Membrane bioreactors for winery wastewater treatment: Case-studies at full scale, Water Sci. Technol. 60 (2009) 1201–1207.
[140] D. Bolzonella, F. Fatone, P. Pavan, F. Cecchi, Application of a membrane bioreactor for winery wastewater treatment, Water Sci. Technol. 62 (2010) 2754–2759.
[141] N. Basset, C. Vidal, A. Coll, I. Fernández, J. Dosta, AnMBR technologies (CSTR and UASB type ) for winery wastewater treatment at low temperatures, (2012).
[142] C. Valderrama, G. Ribera, N. Bah, M. Rovira, T. Giménez, R. Nomen, S. Lluch, M. Yuste, X. Martinez-Lladó, Winery wastewater treatment for water reuse purpose: Conventional activated sludge versus membrane bioreactor (MBR). A comparative case study, Desalination 306 (2012) 1–7.
[143] N. Basset, E. Santos, J. Dosta, J. Mata-Álvarez, Start-up and operation of an AnMBR for winery wastewater treatment, Ecol. Eng. 86 (2016) 279–289.
[144] I. Alkorta , C. Garbisu, M.J. Llama, J.L. Serra, β-Transelimination of citrus pectin catalyzed by penicillium italicum pectin lyase in a membrane reactor, Applied Biochemistry and Biotechnology 55 (1995) 249- 259.
[145] K. Bélafi-Bakò, M. Eszterle, K. Kiss, N. Nemestòthy, L. Gubicza, Hydrolysis of pectin by Aspergillus niger polygalacturonase in a membrane bioreactor, J. Food Eng. 78 (2007) 438-442.
[146] J.M Rodriguez-Nogales, N. Ortega , M. Perez-Mateos, M. Busto, Pectin hydrolysis in a free enzyme membrane reactor: An approach to the wine and juice clarification, Food Chem. 107 (2008) 112-119.
[147] E. Olano-Martin, K.C. Mountzouris , G.R.Gibson, R.A. Rastall, Continuous production of pectic oligosaccharides in an enzyme membrane reactor, J. Food Sci. 66 (2001) 966-971.
[148] A.R. Szaniawski, H.G. Spencer, Effects of pectin concentration and crossflow velocity on permeability in the microfiltration of dilute pectin solutions by macroporous titania membranes containing immobilized pectinase, Biotechnol. Prog. 12 (1996) 403-405.
[149] M.E. Carrín., L.N. Ceci, J.E.Lozano, Ultrafiltration fibers like bioreactors, Latin American Applied Research 31 (2001) 241-245.
[150] M.E Carrín, L.N Ceci, J.E. Lozano, Effects of pectinase immobilization during hollow fiber ultrafiltration of apple juice, J. Food Proc. Eng. 23 (2000) 281-298.
[151] V. Bakoyianis, A.A Koutinas, A catalytic multistage fixed-bed tower bioreactor in an industrial-scale pilot plant for alcohol production, Biotechnol. Bioeng. 49 (1996) 197–203.<197::AID-BIT8>3.0.CO;2-L
[152] P. Loukatos, M. Kiaris, I. Ligas, G .Bourgos, M. Kanellaki, M. Komaitis, A.A. Koutinas, Continuous wine making by γ-alumina-supported biocatalyst, Appl. Biochem. Biotechnol. 89 (2000) 1–13.
[153] M. Ciani, L. Ferraro, Enhanced glycerol content in wines made with immobilized Candida stellata Cells, Appl. Env. Microbiol. 62 (1996) 128–132.
[154] G. Suzzi, P. Romano, L. Vannini, L. Turbanti, P. Domizio, Cell-recycle batch fermentation using immobilized cells of flocculent Saccharomyces cerevisiae wine strains, World J. Microbiol. Biotechnol. 12 (1996) 25–27.
[155] E.P. Bardi, A.A. Koutinas, Immobilization of yeast on delignified cellulosic material for room temperature and low-temperature wine making, J. Agric. Food Chem. 42 (1994) 221–226.
[156] E.P. Bardi, A.A. Koutinas, M. Kanellaki, Room and low temperature brewing with yeast immobilized on gluten pellets, Process Biochem. 32 (1997) 691–696.
[157] E.P. Bardi, A.A. Koutinas, M. Soupioni, M. Kanellaki, Immobilization of yeast on delignified cellulosic material for low temperature brewing, J. Agric. Food Chem. 44 (1996), 463–467.
[158] Y. Kourkoutas, A. Ekatorou, I.M. Banat, R. Marchant, A.A. Koutinas, Immobilization technologies and support materials suitable in alcohol beverages production: a review, Food Microb. 21 (2004) 377-397.